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Digital design tools for the 3D Concrete Printing (3DCP) industry could be enriched by 

topology optimization, among others to minimize the amount of concrete used. However, a 

prerequisite for applying such an algorithm to 3DCP is that concrete’s asymmetric stress 

limits in tension and compression are correctly addressed. Therefore, here topology 

optimization is studied as the minimization of the structural volume, subject to local, 

asymmetric stress constraints, represented by the Drucker-Prager yield criterion. Three 

available methods have been selected for a comparison: Traditional Topology Optimization 

(TTO) in combination with the Method of Moving Asymptotes (MMA) by Svanberg (1987); 

Bi-directional Evolutionary Structural Optimization (BESO); and heuristic Proportional 

Topology Optimization (PTO). Numerical studies show that TTO provides more optimal 

results (i.e. a lower structural volume) than BESO and PTO. This is especially clearly shown 

by some typical benchmarks for which either pure tensile or pure compressive structures are 

generated. In these benchmarks, it is shown that BESO and PTO generally generate tension-

only structures, whereas TTO generally provides more material-efficient compression-only 

structures. Moreover, TTO shows to be less sensitive to the presence and magnitude of peak 

stresses in the structure. As such, it is concluded that TTO is preferred over BESO and PTO. 

Consequently, TTO is applied in an illustrative case study of a two-dimensional façade 

structure, where a daylight score is presented as an objective or as an additional constraint, 

and a print path generation tool is applied to the topology optimization outcome. From this 

case study, although promising, it is concluded that more research is required to obtain a 

design-for-manufacturing tool that can be utilized in the 3DCP industry. 

Key words: Topology optimization, 3D Concrete Printing (3DCP), BESO, PTO, traditional 

topology optimization, MMA, asymmetric stress constraints 
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1 Introduction 

Topology optimization is a method that is aimed at finding the optimal distribution of 

material within a given design domain. As such, topology optimization might, for 

example, be used to obtain higher strength-to-weight ratios of structural elements by 

avoiding the presence of redundant material. As a result, topology optimization methods 

are potentially beneficial in the construction industry, e.g. for the design of lighter and less 

resource intensive structures, which in turn contributes positively to the world-wide 

problem of resource depletion. 

 

The above potential, across many disciplines, has caused research in the field of topology 

optimization to see an increasing amount of attention, since the initial publication by 

Bendsøe and Kikuchi (1988). Based on this first publication, many researchers focused on 

the maximization of a structure’s stiffness, which is equivalent to the minimization of its 

overall compliance (e.g. Sigmund (2001) or Andreassen, Clausen, Schevenels, Lazarov, and 

Sigmund (2011)). However, a drawback of these compliance-based methods is that they do 

not guarantee that stresses in the optimized design are within their limits. And 

consequently the result is an optimized design that may still require significant post-

processing to ensure its structural integrity. Consequently, a slightly newer point of focus 

is to develop stress-constrained topology optimization, which minimizes the volume, 

while at the same time satisfying stress constraints. Among others, authors who have 

worked on stress-constrained volume minimization are Duysinx and Bendsøe (1998), 

Biyikli and To (2015), and Luo and Kang (2012). Also other objectives, such as the 

maximization of the first fundamental natural frequency; tuning buckling loads; or the 

design of compliant mechanisms are all part of the developments (Bruggi & Duysinx, 

2012). Reviews in the field of topology optimization can be found in e.g. Bendsøe and 

Sigmund (2003) and Deaton and Grandhi (2014). Next to a literature review, Deaton and 

Grandhi (2014) also provide some recommendations related to new algorithm 

development. The key to these recommendations is that one should focus on methods and 

test cases that apply to real-world (instead of academic) problems. 

 

A possible real-world application of topology optimization is the development of a design-

for-manufacturing tool, in which a digital design can be directly manufactured from its 

optimized digital model, without the need for post-processing. These kinds of tools may, 
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for example, be applied in the field of 3D Concrete Printing (3DCP), where ideally a digital 

model could be sent directly to a concrete printer (Salet, Ahmed, Bos & Laagland, 2018). 

 

Concrete/cement-based additive manufacturing methods have undergone rapid 

development in recent years, and links with topology optimization have been made 

successfully. For example, Pastore, Menna and Asprone (2020) investigated topology 

optimization for combined loading, based on proportional topology optimization with a 

risk-factor approach to include asymmetric stress limits. Furthermore, a full scale 

experiment was performed by Kinomura, Murata, Yamamoto, Obi and Hata (2020), who 

designed a 3D printed, practically scaled pedestrian bridge, for which they used printed 

segments that were ensembled using pre-stressed bars. However, tensile- and compressive 

strength asymmetry was neglected in their optimization algorithm. Jewett and Carstensen 

(2019) designed and constructed three topology optimized beams using either volume-

constrained compliance minimization or stress constrained volume minimization (using a 

so-called p-norm average stress formulation, including asymmetric stress limits in tension 

and compression) to experimentally validate the optimized geometries. Later, Liu, Jewett 

and Carstensen (2020) added reinforcement to their analysis by using a hybrid mesh 

topology optimization algorithm that generates strut-and-tie layouts. However, both above 

studies only focus on a specific case study and no additive manufacturing method was 

used to construct the test specimens. Admirable, Langelaar (2018) proposed a method to 

include manufacturing constraints like a support structure layout and a build orientation 

into the topology optimization algorithm, for which the volume constrained compliance 

minimization process was used. 

 

From these previous studies, it can be concluded that direct application of optimization 

results into a 3DCP manufacturing process requires the consideration of several material- 

and manufacturing constraints in the optimization algorithm. For example, the material 

behaviour and asymmetric stress limits of concrete should be correctly incorporated in the 

optimization process. Therefore, the research presented here focusses on finding the 

optimization method that has the highest potential to be used in the 3DCP industry. Three 

topology optimization methods for stress-constrained volume minimization are compared. 

The main focus of the comparison is on the material behaviour of concrete, which has 

asymmetric stress limits for tension and compression, and it is investigated whether these 

properties result in suitable geometries in the optimization. As such, the outcomes of this 

comparison can provide a start for the development of a design-for-manufacturing tool for 
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3DCP applications. However, a design-for-manufacturing tool should ideally include more 

than just stress constraints. Therefore, the most suitable optimization method in this 

research will be used to investigate the possibilities and limits to adding an extra 

constraint, a minimum daylight-score, to the optimization process. Furthermore, a print 

path generation tool for 3DCP is briefly discussed in the context of a façade case study. The 

paper ends with conclusions and recommendations for future research. 

2 State-of-the-art 

Structural optimization of concrete structures can be carried out via several means, but 

here the focus is on topology optimization. For topology optimization, the distribution of 

material is determined by iterations in which the (relative) densities of discrete parts of the 

domain are gradually increased or decreased. Besides a design domain and boundary 

conditions, topology optimization does not require an initial design concept. For 

initialisation, often a uniform material layout is used. Contrary, size- and shape 

optimization techniques minimize or maximize a physical (structural) quantity by varying 

parameters linked to an initial design (Bendsøe & Sigmund, 2003). 

 

In the field of topology optimization, several methods exist. Here, three different methods 

are studied: 

 

• Traditional Topology Optimization (TTO), which refers to the currently most widely 

used density-based type of optimization methods. It uses a Solid Isotropic Material 

with Penalization (SIMP) material model and mathematical gradient-based solvers. 

Element sensitivities are used to steer the distribution of intermediate densities. 

• Bi-directional Evolutionary Structural Optimization (BESO), which is an evolutionary 

procedure that provides pure black-and-white solutions. Element sensitivities are 

used to steer the distribution, with elements being either active or not, and so no 

intermediate densities are used. 

• Proportional Topology Optimization (PTO), which is a relatively new method with a 

fully heuristic and non-gradient based material distribution algorithm. Element 

compliance or stress values are directly used to steer the (intermediate) distribution, 

and so no element sensitivities are used. 
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In literature, several more topology optimization methods can be found, which are either 

variants of the methods above, or methods that have their origin in shape optimization 

(such as the level-set method (Challis, 2010)). However, this article focusses only on basic 

variants of the above-mentioned topology optimization methods, and does not consider 

the level-set method, since this method has its origin in shape-optimization rather than 

topology optimization. 

2.1 Stress-constrained volume minimization 

Stress-constrained volume minimization (in topology optimization) is defined as an 

optimization problem with the objective to minimize the amount of material within a 

predefined design domain, while satisfying local or global stress constraints. In the 

presented study, the design domains of the two-dimensional examples are discretized into 

square, bilinear, four-node plane stress finite elements with a single integration point at 

their centre. The stress constraints apply to each individual element. Furthermore, all 

elements in the design domain have a variable density, with 1.0 representing completely 

solid material and 0.0 representing a complete void. In mathematical form, the stress-

constrained volume minimization problem can then be presented as: 
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in which V(x) is the total structural volume, ev is the element volume of element e, and ex is 

this element’s relative density. Furthermore, K(x) is the global stiffness matrix, u and f are 

the global displacement and force vectors, N is the number of elements in the discretized 

design domain, and eN describes the set of all elements in the design domain. Finally, 

[ ]Nx x x T
1 2, ,...,=x is the vector of design variables, which are all bounded by a minimum 

value minx . Here, the stress constraints are formulated by the Drucker-Prager yield stress 

criterion, for it can manage asymmetric stress limits in tension and compression, which is a 

typical material property of concrete (Luo & Kang, 2012). The criterion is denoted as: 

 
 

D e eJ I2 , 1,+ α ≤ β   (2) 

 



 204 

where α and β are material constants that describe the relation between the material’s 

uniaxial tensile- and compressive strength, e xx yy zzI1, = σ + σ + σ is the first stress invariant 

of element e , and D eJ2 , is the second deviatoric stress invariant of element e, expressed by: 
 

D e xx yy yy zz zz xx xy yz zxJ 2 2 2 2 2 21
2 , 6 ( ) ( ) ( ) 6 6 6 = σ − σ + σ − σ + σ − σ + σ + σ + σ   (3) 

 

For concrete with a compressive strength Lcσ and a tensile strength Ltσ , the values for α 

and β can be derived by combining the principal stress states ( Lc3σ = −σ , 1 2 0σ = σ = ) and 

( Lt1σ = σ , 2 3 0σ = σ = ) with the Drucker-Prager yield criterion, which leads to: 
 

Lc Lt

Lc Lt3( )
σ − σ

α =
σ + σ

 (4) 

Lc Lt

Lc Lt

2
3( )

σ σ
β =

σ + σ
. (5) 

It can be shown that for so-defined strength ratios γ = Lc Ltσ σ smaller than 1/3 and larger 

than 3, the Drucker-Prager criterion might give negative results for bi-axial tension or bi-

axial compression. To prevent related issues in the topology optimization process, only 

ratios 1/3 ≤ γ ≤ 3 are considered here. 

3 Topology optimization methods 

3.1 Traditional Topology Optimization (TTO) 

The first topology optimization method to be presented is Traditional Topology 

Optimization (TTO). For this method, normally the relationship between an element’s 

Young’s modulus ( eE ) and the element density follows the SIMP approach, in which the 

material properties are modelled as the solid material properties multiplied by the element 

relative density raised to a certain power p (Sigmund, 2001): 

  
p

e e eE x x E0( ) =  (6) 

in which E0 is the Young’s modulus of the solid material, p is the so-called penalty factor, 

and ex is the relative density of element e, which should always be larger than a small, non-

zero value xmin to prevent singularity of the stiffness matrix (Sigmund, 2001). The power-

law approach steers the topology optimization procedure as much as possible towards 

black-and-white designs, e.g. designs with most if not all densities close to either 0.0 or 1.0. 
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Using the material model above, several strategies can be used to predict the material 

(re)distribution per iteration. For the stress-constrained problem here – which has multiple 

constraints – the Method of Moving Asymptotes (MMA) is applied, using an 

implementation by Svanberg (1987). In the MMA method, each iteration starts with a 

current iteration state kx , in which x is the vector of design variables and k is the iteration 

number. At this state kx , each constraint function if ( )x is replaced by a convex 

approximation function, based on gradient information and on its two parameters k
iu and 

k
il , which are defined as the moving asymptotes. Then the sub problem with the convex 

functions is solved, resulting in a new iteration point k 1+x , including updated values for 

the moving asymptotes (Svanberg, 1987). Note that sensitivity information of both the 

objective and the constraint functions is required. For a detailed description of MMA, the 

calculation of approximating functions, and the so-called primal-dual Newton method that 

is used to solve the sub problems, the reader is referred to Svanberg (1987) and Svanberg 

(2002). 
 

Each constraint function in this research is formulated via the Drucker-Prager yield 

function (Equation 2), which is here a function of the stress state at the integration point at 

the centre of each element. Following normal finite element theory, the (homogenized 

macroscopic) stress state e,homσ at the centre of an element with relative density ex is 

related to the element displacement vector eu by p
exe,hom 0 e=σ T u , in which E0 0 0 e=T D B  

is the stress matrix of the element with solid material (density 1.0), which can be derived 

using the finite element’s shape function derivative matrix eB and its constitutive matrix 

0D (the latter omitting Young’s modulus e eE x( ) ). However, this (homogenized 

macroscopic) stress differs from the stresses in a fictitious porous microstructure of an 

element with an intermediate density (the latter to be regarded as consisting of finely 

distributed solid parts with voids in between). Therefore, Duysinx and Bendsøe (1998) 

state that the failure criteria for a porous (i.e. intermediate density) SIMP material should 

be based on the so-called local element stress state eσ , being the stress in the solid parts of 

the porous microstructure. They predict this local stress state by interpolation as follows: 
 

p q
eq

e
x

x
e,hom

e 0 e
−= =

σ
σ T u  (7) 

for which the power q should be taken equal to p to obtain a response that corresponds to 

the behavior of porous materials. This means that the density-related term ex in Equation 7 
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vanishes. Note that the stress is still an implicit function of the relative density though, for 

the relative density distribution has determined the displacements eu in the finite element 

analysis earlier. 
 

A combination of Drucker-Prager based stress constraints and the above stress formulation 

for a porous microstructure, e 0 e=σ T u , may give rise to the so-called singularity 

phenomenon, in which the algorithm cannot lower the density of low-density elements to 

void level ( xmin ). To prevent the singularity phenomenon, the constraint function is 

modified by the ε-relaxation technique (Duysinx & Sigmund, 1998). Thus, relaxing the 

Drucker-Prager yield stress criterion and using matrix notation for Equation 2, leads to the 

final expression for a constraint function for each element e: 
 

( ) eR h e
1
2T1

e e 0 e 0 e e3
1 0

 
= + α − ≤ ∈  β  

u M u W u N  (8) 

with T
0 0 0=M T VT and T

0 0=W w T , in which w and V are a constant vector and matrix, 

which are introduced for computing the first and second stress invariants as mentioned in 

section 2. Furthermore, e eh x1= − ε + ε is the relaxation coefficient. The relaxation 

parameter ε is a small number, which is taken as xminε = in this research, based on the 

publication of Luo and Kang (2012). The sensitivity of each stress constraint Re ( e e∈ N ) 

with respect to the element densities jx ( j e∈ N ) is obtained via direct differentiation of 

Equation 8: 
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in which ejδ ensures that the last term is zero, except for e = j. Equation 9 can be simplified 

by defining a sparse vector ea that has the same dimensions as the global displacement 

vector u and that contains non-zero elements only at the positions corresponding to the 

(global) degrees of freedom of element e in u, here symbolically presented as: 
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T
T
e 0

0T
e 0 e

0 ... 0 0 ... 0
3

  
  = + α
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u M W
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 (10) 

 

Which transforms Equation 9 into: 
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ej
j j e

R
x x x

Te
e 2

1∂ ∂ ε
= + δ

∂ β ∂
ua . (11) 

 

By taking the derivative of the equilibrium equation K(x)u = f on both sides, and 

neglecting body forces (e.g. self-weight), such that jx 0∂ ∂ =f , it is obtained that: 

 

( )p p
j j j e j j j j e jj j

j e e

R px E px E
x x x

T1 1T 1 Te
e 0 0, e 0 0,2 2

1 1− −−∂ ε ε
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∂ β β
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where j0,K is the element stiffness matrix without Young’s modulus, and the matrix jL  

collects nodal displacements from the global displacement vector via j j=L u u . 

Furthermore, vector eλ is the solution to the adjoint system of equations e e=Kλ a . 
 

The sensitivities of the stress constraints in Equation 12 form a Jacobian matrix, 

representing the partial derivatives of each stress constraint to each design variable. The 

sensitivity of the objective function with respect to one of the design variables ( eV x∂ ∂ ) 

equals the element volume divided by the total volume ( ev V0 ), which is constant for the 

regular mesh used here. To prevent the formation of checkerboard patterns and mesh-

dependent results, a density filter is applied (Sigmund, 2007). This filter results in filtered 

physical densities ( ex ) next to the design variables ( ex ). The design variables are filtered by 

taking a weighted average over the densities in a circular filter area with radius rmin : 
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with the height factor eiH r e iminmax(0, ( , ))= − ∆ , in which rmin is the filter radius, e i( , )∆ is 

the distance between the center of elements e and i, and eiH is zero outside the filter area. 

The physical densities are the ones used in the finite element analysis. And after this 

analysis, the sensitivities of the objective- and constraint functions with respect to the 

design variables are found by: 
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which are obtained by the chain rule, and which describe the sensitivity to the design 

variables instead of the sensitivity to the physical densities. As such, the density filter ensures 

that a consistent optimization problem is maintained, in which the physical densities are 

used for the finite element analyses and the design variables for the optimization process. 

Using the above setup, the solution procedure for stress-constrained TTO is schematically 

shown in Figure 1. Note that for comparison with the other methods to be presented, TTO 

updates element densities based on objective and constraint sensitivities (to the element 

densities), and intermediate densities are possible. 

 

 
Figure 1. Schematic overview of Traditional Topology Optimization (TTO) for stress-constrained 

volume minimization 

3.2 Bi-directional Evolutionary Structural Optimization (BESO) 

In the group of Evolutionary Structural Optimization (ESO) methods, densities do not 

have any value between 0.0 and 1.0, as in the SIMP approach. Instead, they are either 1.0 or 

0.0 (black or white, solid or void). Consequently, the expression for the Young’s modulus 

becomes: 
 

e e e e eE x E x E x xmin 0( ) max( , ) 0.0 1.0= = ∨ =  (16) 

 

in which Emin is a small, non-zero stiffness assigned to void regions, to prevent singularity 

of the stiffness matrix. 
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The ESO method was developed based on the idea that a structure will obtain its optimal 

topology by gradually removing low-stressed material from an initially fully occupied 

design domain (Xie & Steven, 1997). However, it was shown that this approach does not 

always work if removed elements cannot be recovered (Xia, Xia, Huang, & Xie, 2018). 

Consequently, the Bi-directional ESO (BESO) method was developed, which also allows 

for the recovery of void elements in the neighbourhood of highly-stressed full density 

elements. Several variants of the BESO method exist. The BESO method that is applied 

here uses sensitivity information to determine whether to add or remove an element. And 

by using a sensitivity filter, the sensitivities with respect to the design variables for both 

solid and void elements are computed consistently (Deaton & Grandhi, 2014). 

 

A stress-constrained volume minimization problem can be solved by BESO by starting 

with a fully occupied design domain and determining a new target volume per iteration. 

This target volume can either be higher or lower than the volume of the previous iteration, 

based on whether the stress constraints are violated or not: 
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in which kV is the target volume at iteration k, erc is a predefined evolutionary ratio, which 

determines the percentage of material to be removed or added in each iteration, and 

Re,max is the maximum value of all stress constraints. The target volume of the current 

iteration is distributed over the design domain based on the following threshold parameter 
thα for material addition and deletion: 
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in which eâ represents the filtered and averaged (to be explained) sensitivity of element e. 

Note that the threshold parameter thα is set in each step by means of a bisection method, 

such that the target volume in Equation 17 will be obtained (see also the pseudocode in 

Figure 2). The sensitivity numbers j j e( )α ∈ N are based on the magnitude of the sensitivity 

of the stress constraints with respect to the design variables. The computation of these 

sensitivities is similar to the sensitivity analysis presented for the TTO method, with the 
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exception that no intermediate densities exist in BESO. Therefore, stress interpolation and 

constraint relaxation are not required, which leads to: 
 

( )e
e

xR e
1
2T1

e 0 e 0 e e3 1 0
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in which the element relative density ex equals either 0 or 1. If ex = 0 (void), Equation 19 

becomes eR 1= − , so the stress-constraints for void elements are satisfied naturally. 

Consequently, only solid elements are considered in the sensitivity analysis. For these solid 

elements ( ex = 1), the sensitivity of Equation 19 with respect to the design variables is 

determined similar to the sensitivity analysis presented in Section 3.1. However, the result 

of that sensitivity analysis will be a full Jacobian matrix, while the sensitivity data in BESO 

should exist of only one value per element to allow for ordering of the sensitivities. As 

such, reducing the Jacobian matrix is achieved by selecting for each element only the 

sensitivity that belongs to that constraint that shows the maximal sensitivity for the 

element's relative density, as follows: 
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Note that e jR x∂ ∂ equals 0 if eR concerns a void element, to be consistent with Equation 19 

for solid ( ex = 1) or void ( ex = 0) elements. This correction also follows the research 

performed by Xia, Zhang, Xia and Shi (2018). For reasons mentioned previously for TTO, 

the sensitivity numbers jα in Equation 20 are filtered using a sensitivity filter: 
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After which they are averaged with the sensitivities of the previous iteration: 
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e
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2
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This latter inclusion of history information has shown to improve convergence and to 

prevent strong oscillations. An overview of the BESO procedure above is schematically 

presented in Figure 2. For comparison with the other methods, note that BESO updates 

element densities based on sensitivities of the constraints to the element densities, but 
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elements are either present (full density) or do not exist (zero density), so no intermediate 

densities are used. 

 

 

 
Figure 2. Schematic overview of Bi-directional Evolutionary Structural Optimization (BESO) for 

stress-constrained volume minimization 

3.3 Proportional Topology Optimization (PTO) 

As for TTO, the material properties in the PTO method are described by the SIMP material 

model, Equation 6. However, different from TTO, updating of the design variables does 

not utilize sensitivities (of the stress constraints to the densities). Instead, densities are 

distributed proportional to the element stress itself. Additionally, Biyikli and To (2015) 

suggest that PTO performs better if the above proportional relationship is extended with a 

power q, with q = 2 being the optimum value. This leads to: 

q
r eq e

e q
eq ii

m
x

e

,
,new

,∈

σ
=

σ∑ N

 (23) 
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with eq e,σ an equivalent stress in the element, to be presented below, and rm the so-called 

remaining material amount, which is determined iteratively by an inner loop of the 

solution procedure, and that depends on the target material amount per iteration tm . This 

target material amount per iteration ( tm ) is based on whether the stresses in the structure 

exceed their limits or not: 
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in which N is the number of elements in the design domain and limσ is the stress limit for 

the maximum equivalent Drucker-Prager yield value ( eq ,maxσ ). The parameter eq e,σ  in 

Equation 23 is derived from the Drucker-Prager yield criterion, Equation 2, which is 

rewritten to the form: 
 

( )Lt
eq e D e e LtJ I, 2 , 1,

σ
σ = + α ≤ σ

β
 (25) 

which states that the tensile strength ( Ltσ ) is the limit for the equivalent Drucker-Prager 

stress value at the center of the element ( eq e,σ ). Note that Equation 25 could also have 

been formulated in terms of the compressive rather than the tensile strength, because α 

and β are functions of both the tensile and compressive strength. To determine the values 

of the stress invariants ( D eJ2 , and eI1, ), the homogenized macroscopic stress at the center 

of the element is used ( p
exe,hom 0 e=σ T u ). This means that grey elements are interpreted as 

solid elements with a lowered Young’s modulus. Note that in TTO grey elements are 

interpreted as microstructures that exist of partly solid material and partly voids. For solid 

( ex = 1.0) and void ( ex = 0.0) elements, as shown to be often found in the solutions, there is 

no difference in interpretation, and therefore the general conclusions of this research still 

hold. Besides, researched showed that by using the formulation of local stresses in PTO (as 

in TTO) the PTO algorithm is not able to find any suitable results due to the singularity 

phenomenon (Duysinx & Sigmund, 1998), i.e. the algorithm is incapable of lowering the 

density of low-density elements to void level. 
 

The densities that are found from the proportional distribution ( e newx , ), Equation 23, are 

filtered using a density filter: 
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Due to the proportional distribution of the design variables, the densities can be assigned 

values larger than 1 or smaller than 0. To prevent this, the values of the filtered densities 

( ex ) are cut-off at their limits, making the actual material amount ( am ) different from the 

target material amount ( tm ). To resolve this issue, the remaining material amount must be 

determined and redistributed multiple times in an inner loop of the solution procedure, 

until am is sufficiently close to tm . The above PTO method is schematically presented in 

Figure 3. For comparison with the other methods: PTO updates element densities based on 

element (equivalent) stress values, not sensitivities, and intermediate densities are used. 

4 Numerical results and comparison 

This section presents a comparison of the three topology optimization methods in Section 

3, for future application in the field of 3DCP, and with therefore a focus on the asymmetric 

stress limits that are typical for concrete. 

4.1 Convergence 

The iterative predictions (density updates) in each optimization algorithm can be halted at 

the moment that a final design state is reached. For now, it is assumed that a final state is 

obtained if the objective value is stable (i.e. constant) over 10 iterations. This is described 

 
 

 
Figure 3. Schematic overview of Proportional Topology Optimization (PTO) for stress-constrained 

volume minimization 
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by the equation below, for which its evaluation is started after the number of iterations k is 

larger than 2M: 
 

M k i k M i
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g g
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( )− + − − +
=

− +
=

−
< δ

∑
∑
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in which g is the objective, errδ is a threshold value, and M determines the number of 

iterations that should be stable (for M = 5, the objective should be stable over 10 iterations). 

Regardless, a minimum of 50 iterations is always carried out, to prevent premature 

abortion at a non-optimal configuration. Finally, for the BESO and PTO simulations, a 

convergence graph is studied afterwards to check if the most optimal solution is found, or 

if a more optimal solution can be obtained by stopping the iterations earlier, see also 

Section 4.7. 

4.2 Benchmark tests 

Concrete has asymmetric stress limits for tension and compression. Therefore, the results 

of the optimization algorithms are, among others, compared by benchmark tests that are 

known for their typical results in case of asymmetric stress limits.  

To illustrate this, the first benchmark test is a single rod structure with an axial load acting 

at mid-span, Figure 4. The amount of material in the rod might be minimized by 

transforming the structure into either a tensile or compressive rod with a length of half of 

the original single rod structure. If the stress limit of the material in compression is higher 

than the stress limit in tension (e.g. Lc Lt2σ = σ ), the required cross-sectional area of the 

tensile rod ( t LtA F= σ ) will be larger than the required cross-sectional area of the 

compressive rod ( c Lc LtA F F (2 )= σ = σ ). For at least simple geometries, likely this 

statement may be generalized as follows: if a concrete structure (with a higher compressive 

than tensile strength) has the possibility to form only members with either compressive or 

tensile stresses, during a volume minimization subject to stress constraints, it should form 

the configuration with only compressive members to obtain the lowest structural volume. 

 
 

 
 

Figure 4. Minimizing the volume of a single rod (complete left) by transforming it into a tensile 

(middle) or compressive rod (complete right) 
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Several characteristically similar benchmark problems are carried out and discussed in the 

upcoming sections. Note that these are still academic cases for which fictive material 

properties are used. 

4.3 Single rod benchmark 

This first benchmark study simulates the above single rod element with an axial load 

acting at mid-span. This single rod is modelled as a 2D optimization problem, using two 

four-node plane stress finite elements and two horizontal concentrated loads. The design 

domain, boundary conditions and loads are presented in Figure 5. The two concentrated 

loads (F) have a magnitude of 0.5 N each. The plane stress elements are 1 × 1 mm, and 

have a thickness (t) of 1 mm too. The Young’s modulus (E) of the solid material is 1 MPa, 

the Poisson’s ratio (ν) is 0.3, and the tensile and compressive strengths are 1 and 1.25 MPa, 

respectively. The penalty factor (p) is 3 and filtering is ignored ( rmin = 1). The first step of 

the stress-constrained volume minimization is explained for each of the three optimization 

methods, and results of the optimizations are given in Table 1. 

 
 

     
Figure 5. Design domain, boundary conditions and load application of the single rod benchmark 

 

For PTO, the initial relative density of both elements is 0.5, which causes the Young’s 

modulus of the elements to be reduced to 0.125 MPa due to the SIMP material model. In 

BESO, the initial density of both elements equals 1, which means that the stiffness is not 

reduced. However, the homogenized stress states in both elements for BESO and PTO are 

the same: 

E x E x1,hom 1 1 0 1 1 2,hom 2 2 0 2 2

0.5000 0.5000
( ) 0.0496 , ( ) 0.0496

0 0

−   
   = = = = −   
      

σ D B u σ D B u  (28) 

Since the shear stress equals zero, it is possible to plot the element stresses in the principal 

stress state, together with the Drucker-Prager yield function that belongs to a tensile and 

1  2 

2              4    F4,x                6 

1              3                   5 

xF4,

xF3,
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compressive strength of 1 and 1.25 MPa, respectively, see Figure 6. Note that as such, this 

figure presents the initial stress states of the elements for a BESO and PTO simulation. 

 

The dotted line in Figure 6 connects the origin with the stress states of the elements, and 

then continues as a straight line. The value of the Drucker-Prager criterion resembles the 

distance from the origin to the stress state of the element divided by the distance from the 

origin to the location where the dotted line in Figure 6 intersects with the Drucker-Prager 

yield function. For element 1, this Drucker-Prager criterion value equals eq ,1σ = 0.4844, and 

for element 2, it equals eq ,2σ = 0.3744. This shows that the stress state of element 1 (the 

element in tension) is closer to material "yielding" than the stress state of element 2 (the 

element in compression). 
 

                              
                Figure 6. Stress states of elements 1 and 2 in the principle stress space 

 

For PTO, for updating the densities, the material is distributed proportional to the above-

mentioned Drucker-Prager equivalent stress value, and thus to element 1, which has the 

highest value, and is on the tensile side of the structure, see also Table 1. 

 

In the BESO procedure, either element 1 or element 2 must be transformed into a void 

element, because the Drucker-Prager equivalent stress values after the first analysis are 

below their limits, see Equation 17. Sensitivities to element 1 are R x1 1∂ ∂ = -0.2427 and 

R x2 1∂ ∂ = -0.1932, and sensitivities to element 2 are R x1 2∂ ∂ = -0.2417 and R x2 2∂ ∂ = -

0.1813. As follows from Equation 20, for element 1, a sensitivity of 0.2427 will be selected, 



 217 

and for element 2, a sensitivity of 0.2417. Now if by Equation 18 a single element must be 

set to zero, the "delete" threshold value is in between the two sensitivities, and the least 

sensitive element will be deleted, which is here element 2, which is under compression. 

Note that element 2 has a lower maximal absolute sensitivity than element 1 because of the 

following. Firstly, for both elements, the stress constraint for element 1 is the most sensitive 

to the element density. This is because element 1 is closer to the Drucker-Prager criterion. 

Secondly, it is common sense that the influence of element 1's density is higher on its stress 

state than the density of the neighbouring element 2. So element 2 shows the lowest 

(absolute maximum) effect on the constraint of element 1. In conclusion, for the current 

situation, with all negative sensitivities, the material is distributed such that the overall 

increase in constraint values is kept to a minimum (as the sensitivity of element 2 was the 

lowest, so minimal influence on the constraints). However, if positive sensitivities are 

present as well (besides negative sensitivities), depending on the ratio of their absolute 

values, the material might also be distributed such that the increase of the constraint values 

is maximized. 
 

Table 1. Results of the single rod benchmark for a stress-constrained volume minimization with 

unequal stress limits 

 TTO BESO PTO 

Stress ratio Lcσ = 1.25 Ltσ  Lcσ = 1.25 Ltσ  Lcσ = 1.25 Ltσ  

Visual output 

(black = solid, white = void) 
   

Iterations 51 (2.61 s) 51 (1.60 s) 51 (1.59 s) 

Volume fraction 0.46 0.50 0.50 

 

With the above reasoning, table 1 correctly shows that BESO and PTO fail to place material 

in the optimal position, namely at the compression side. However, TTO is functioning 

differently (and better). As mentioned earlier, TTO differs from PTO and BESO by using 

both sensitivities of the objective and constraints, combined with intermediate density 

values, while making use of the Method of Moving Asymptotes (Svanberg, 1987). In MMA, 

the gradient information is used to create approximating functions for every iteration k, 

that together form a convex sub problem with only a single minimum. The approximating 

constraint functions for the first iteration in the single rod benchmark are plotted in Figure 
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7, with the "current" densities (0.5) of elements 1 ( x1 ) and 2 ( x2 ) on the x- and y-axis, 

respectively. The actual shape of the stress constraint functions is unknown, therefore, 

approximation functions are used. Figure 7 also includes (dashed) lines of equal volume, 

described by x2 = V - x1 , in which V is the total structural volume. The sub problem in 

Figure 7 is solved by finding x1 and x2 values that satisfy the constraints (i.e. that are 

positioned above both constraint approximation functions), while minimizing the total 

volume (i.e. as close as possible to the origin). The result is the point x1 = 0.6630, x2 = 

0.6637. Using these updated densities, a new set of objective and constraint values is 

obtained, for which new approximation functions are derived. These new approximation 

functions lead to new values of x1 and x2 , etc. Eventually, solving a sequence of these 

convex sub problems results in finding a global or local minimum of the optimization 

problem. For the single rod optimization problem, the suggested solutions by MMA per 

iteration head further and further towards the left-top of the graph (see also Figure 8 in 

which some of the iterations are visualized graphically), which means that solving the 

sequence of sub problems results in a situation in which x2 becomes (nearly) 1 

and x1 becomes (nearly) 0, i.e. the TTO result of the single rod-simulation is a compressive 

bar (see Table 1). This compressive bar has a lower volume fraction than the tensile bars 

that were found using PTO or BESO, so a more optimal solution is obtained. Also, note 

that TTO considers the sensitivity of the objective with respect to the design variables,  

 

 

 

 
Figure 7. Approximation functions (black lines) of the first iteration of the single rod benchmark, 

together with the current (grey square) and new (black dot) values of the design variables 
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meaning that there is an incentive to minimize the structural volume. Differently, in BESO 

and PTO the volume is not truly minimized, but only adapted based on the value of the 

stress constraints. 

 

 
            Iteration 10                                     Iteration 11                                     Iteration 12 

 
Figure 8. Visualization of the MMA procedure during iterations 10, 11 and 12 of the single rod 

benchmark. Visualized: approximation functions per iteration (black curves) and results of the 

previous (grey square) and new (black dot) solutions; these solutions head further and further 

towards the left top of the graph (i.e. the situation for which x1 = 0 and x2 = 1). 

4.4 Four-bar truss benchmark 

The second benchmark problem is the so-called ‘four-bar truss’ benchmark, for which the 

square design domain, four hinged supports, and the single concentrated load at the centre 

are schematically presented in Figure 9. For the simulations, the 2D design domain is 

discretized into 20 × 20 square, bilinear plane stress finite elements of 1 × 1 mm with t = 1 

mm, E = 1 MPa and ν = 0.3. Furthermore, L = 20 mm, F = 1 N, Ltσ = 0.75 MPa, p = 3, and  

rmin = 1.5. The four-bar truss benchmark owes its name to its typical cross-like output for 

symmetric optimization problems. However, for the volume minimization problem with 

asymmetric stress limits in tension and compression as used here, two of the four members 

that are usually present in the symmetric solution might be left out. Namely, similar to the 

previously described single rod benchmark, it is expected that for concrete, the tensile 

members are left out such that a compression-only structure will be formed, which is likely 

to have a lower structural volume compared to a tension-only structure. Results are 

summarized in Table 2. Also for this benchmark, TTO correctly finds the most optimal 
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solution, whereas PTO and BESO prefer material in the tensile region, for the reasons 

explained before. 
 

 
Figure 9. Design domain, boundary conditions and load application of the four-bar truss benchmark 

 

Table 2. Results of the four-bar truss benchmark for a stress-constrained volume minimization with 

unequal stress limits 

 TTO BESO PTO 

Stress ratio Lcσ = 3 Ltσ  Lcσ = 3 Ltσ  Lcσ = 3 Ltσ  

Visual output 

         ex 1=  

         ex 0.5=  

         ex 0=  
   

Iterations 52 (305 s) 169 (13 s)  232 (8 s) 

Volume fraction 0.09 0.23 0.28 

Stress index* -0.003 -0.001 -0.000 

* Max. Drucker-Prager stress minus limit value; negative value means stress constraints 

satisfied. 

4.5 Two-bar truss benchmark 

For the two-bar truss benchmark in Figure 10, necessarily both a tensile and a compressive 

member are required to distribute the load. The design domain is fixed along the complete 

bottom by hinges at each finite element node, as schematically presented in Figure 10, for 

which L = 80 mm. Furthermore, a shear load of 1 N is applied in the middle of the upper 

edge, smoothly distributed over three nodes (3 × F = 1 N). The design domain is meshed 

L/2      L/2 

L/2

 

     

L/2 F 
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by 20 × 80 plane stress finite elements of 1 × 1 mm with t = 1 mm, E = 1 MPa and ν = 0.3. 

Furthermore, Ltσ = 0.415 MPa, p = 3, and rmin = 1.5. 

 

 
Figure 10. Design domain, boundary conditions and load application of the two-bar truss 

benchmark 

 

For a material with equal stress limits in tension and compression, the optimum is a 

symmetric structure with angles of 45o between the bars and the supporting ground-face 

(Rozvany, 1996). However, for the optimization with asymmetric stress limits, Rozvany 

(1996) states that the weakest bar (i.e. the tensile bar for concrete) should ideally get a 

shorter length and a greater width than the stronger (compressive) bar to find the 

minimum volume. This outcome indeed shows up when using TTO, see Table 3, although 

the difference in angles between the bars and the supporting ground-face is hardly 

noticeable for this specific example. However, if a larger difference in compressive and 

tensile strength is taken and the value of the external load is increased, the angles between 

the bars and the ground-face will become more distinct, as can be seen in Figure 11. 

Contrary to TTO, PTO and BESO show longer tensile than compressive bars (as can be 

seen in Table 3), which is contrarily to the theoretically optimal solution. Besides, these 

tensile bars do have a greater width than the compressive bars, which corresponds to 

theory, but which results in a larger final volume of the structure. This is a similar outcome 

as for the previous benchmarks. 

 

 
Figure 11. Result of TTO with asymmetric stress limits ( Lcσ = 2.58 = 3 Ltσ ) and  

an external force of 1.5 N (all stresses remain below the limits) 

Volume fraction: 0.11 

3 × F 

L/2                  L/2 

L/4 
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Different from TTO, and as shown by Equations 17 and 24, BESO and PTO steer the 

optimization algorithm based on the maximum stress (peak stress) in the structure. For the 

two-bar truss problem, the peak stress is near the external load, and so its magnitude 

might influence the BESO and PTO results. Indeed, if the load in the benchmark above is 

reduced to 0.9 N, much more optimal structures will be found by PTO (volume fraction = 

0.08; a reduction of 81% compared to Table 3) and BESO (volume fraction = 0.10; a 

reduction of 72%), whereas for TTO the difference is minimal (volume fraction = 0.08; a 

reduction of 11%). 

 

Table 3. Results of the two-bar truss benchmark for a stress-constrained volume minimization 

 TTO BESO PTO 

Stress ratio Lcσ = 2 Ltσ  Lcσ = 2 Ltσ  Lcσ = 2 Ltσ  

Visual output 

(See legend Table 2)    

Iterations 65 (1.8 h) 99 (80 s) 157 (8 s) 

Volume fraction 0.09 0.42 0.36 

Stress index* -0.001 -0.001 -0.000 

Convergence 

graph 

   
* Max. Drucker-Prager stress minus limit value; negative value means stress constraints 

satisfied. 

4.6 L-bracket benchmark 

The L-bracket benchmark in Figure 12 is an optimization problem for which, at least 

theoretically, an infinite stress occurs at the sharp inner corner of the design domain, which 

may be difficult to handle by optimization algorithms. The edges with length L = 50 mm 

are divided into 50 finite elements of 1 × 1 mm with t = 1 mm, E = 1 MPa and ν = 0.3. 

Furthermore, F = 1 N, Ltσ = Lcσ = 1.5 MPa, p = 3, and rmin = 1.5. Table 4 shows the results 

of the three optimization methods, including a stress plot. For BESO and PTO, the stress 

singularity at the inner corner remains (for the edge remains sharp) but for TTO, the inner 

corner is rounded in the optimization process, such that the stress singularity vanishes, 
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and more elements are utilized up to their full capacity. The reason for PTO to keep the 

sharp corner is that PTO distributes material to the most highly stressed area(s) in the 

design domain, which is – for this case – the very high (theoretically infinite) stress at the  
 

 
Figure 12. Design domain, boundary conditions and load application of the L-bracket benchmark 

 

Table 4. Results of the L-bracket benchmark for a stress-constrained volume minimization problem 

 TTO BESO PTO 

Stress ratio Lcσ = Ltσ  Lcσ = Ltσ  Lcσ = Ltσ  

Visual output 

    
Iterations 52 (3.0 h) 110 (242 s) 80 (5 s) 

Volume fraction 0.324 0.370 0.393 

Stress plot 

    

Remarks Homogenized stress: 

1.472 MPa, spread out 

across 3 bars 

Max. homogenized 
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inner corner. TTO on the other hand uses sensitivity information, which informs that 

removing material from the inner corner will have a large effect on reducing the peak 

stresses. Therefore, TTO removes material at the inner corner and rounds it. BESO also 

uses sensitivity information, but it does not regard the sign of the sensitivity. Instead, it 

puts material at the locations where the absolute sensitivities are high, which is at the inner 

corner. It should be noted that BESO studies with stress constraints exist in which the 

rounded corner does appear. One example is the study of Fan, Xia, Lai, Xia and Shi (2019). 

However, in that study a p-norm global (symmetrical) stress constraint is used rather than 

an (asymmetric) stress constraint per element, and the rounded corner only occurs for 

more stringent stress limits for which a peak stress near the inner corner is still observed. 

4.7 MBB beam 

Finally, the Messerschmitt-Bölkow-Blohm (MBB) benchmark is used, because it is a classic 

problem in topology optimization (Sigmund, 2001; Andreassen, Clausen, Schevenels, 

Lazarov, and Sigmund, 2011). The design domain, boundary conditions, and a single point 

of load application halfway the symmetric MBB-beam are depicted in Figure 13. For the 

simulations, the 2D design domain is discretized here into 60 x 20 square, bilinear plane 

stress finite elements of 1 × 1 mm with t = 1 mm, E = 1 MPa and ν = 0.3. Furthermore, L = 

120 mm, F = 1 N, Ltσ = 1.75 MPa, p = 3, and rmin = 1.7. For the optimization problem with 

asymmetric stress limits in tension and compression, as presented in Table 5, TTO provides 

a more optimal result with a lower volume fraction compared to BESO and PTO. In the 

solutions, necessarily both tensile and compressive members must be present, and so no 

general statement can be made about the required width of the members. 
 

In Table 5, the BESO and PTO results shown are not the final results of the optimization. 

Instead, from the convergence graph, the optimization results with the minimum volume 

are selected and presented. Although these solutions are more optimal than the final 

solutions, the algorithm did not stop the simulations at these points due to a convergence 

issue. Namely, the convergence criterion for a stable solution is not met at these iterations 

with the lowest structural volume due to the linear volume in- and decrease that is part of 

the PTO procedure, and the forced percentual volume in- or decrease for the BESO 

procedure. Therefore, as mentioned earlier, it is required to study the convergence graph 

of PTO and BESO after the simulation has finished, to check if the most optimal solution is 

found. For TTO these issues have not been encountered due to TTO’s pure gradient-based 

character. 
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Figure 13. Design domain, boundary conditions, and load application halfway at the MBB beam 

 

Table 5. Results of the MBB beam benchmark for a stress-constrained volume minimization problem 

 TTO BESO PTO 

Stress ratio Lcσ = 3 Ltσ  Lcσ = 3 Ltσ  Lcσ = 3 Ltσ  

Visual output 

(See legend Table 2)    
Iterations 58 (1.0 h) 135 (65 s) 188 (10 s) 

Volume fraction 0.252 0.266 0.375 

Stress index* -0.005 -0.253 -0.091 

Convergence graph 

   

* Max. Drucker-Prager stress minus limit value; negative value means stress constraints 

satisfied. 

4.8 Discussion 

In the above benchmarks, all three optimization methods resulted in topologies for which 

all stress constraints are met, although the solutions differ per method. The single rod and 

four-bar truss benchmarks ideally result in compression-only structures for a material that 

has a higher stress limit in compression than in tension. However, Table 1 and Table 2 

showed this is only the case for TTO. Differently, PTO naturally distributes the material to 

the weakest side of the structure if opposite stress states with equal magnitudes are 

present, since this weakest area is closer to material yielding. BESO, on the other hand, 

uses the magnitudes of the sensitivities of the constraints with respect to the design 

variables to steer the simulation, however, their directions (their plus or minus signs) are 

ignored. Consequently, no distinction is made between positive or negative influences of 

F 

L/2 

L/6 
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the change in relative density on the maximum stress values, so BESO might minimize or 

maximize this change in the constraint values. Furthermore, neither BESO nor PTO 

considers the sensitivity of the objective with respect to the design variables, meaning that 

there is no explicit incentive to minimize the structural volume in these methods. This 

shortcoming is here partly solved by using a regular mesh and letting the volume decrease 

if the stresses do not exceed their limits. This solution will, however, not hold if non-

regular finite element meshes are used. Contrary to BESO and PTO, TTO explicitly 

considers the sensitivity of the objective function, and so truly tries to minimize the 

objective during MMA, resulting in a smooth convergence of the optimization. 

Furthermore, TTO takes the sensitivities of the stress constraints into account including 

their directions (sign), such that it can steer the minimization of the objective function 

towards a state in which the increase in constraint values is limited. Consequently, TTO 

implicitly considers peak stresses, without letting the peak stresses define whether the 

volume should change. It should be noted, however, that for the current implementations 

TTO is significantly more time consuming than BESO and PTO: to obtain the solutions in 

Table 2-5, TTO took on average 62 times as long as BESO and 842 times as long as PTO. For 

all benchmarks, more than 90% of TTO time was consumed by MMA, in which a dense 

system of equations of the same size as the number of constraints is solved multiple times 

in an inner iteration loop. For the currently performed benchmarks, the computational 

costs of TTO were not considered an issue due to the small scale of the problems. 

However, for analyses on a more realistic scale, performance improvements should be 

sought. For example, the computational costs of TTO might be decreased by 

multithreading, but it is known from literature that topology optimization with local stress 

constraints and an MMA solver inevitably takes a significant amount of time (Luo & Kang, 

2012). Alternatively, solutions like grouped aggregation (Luo & Kang, 2012) or active set 

strategies (Bruggi & Duysinx, 2012), which either group constraints together or only 

consider constraints that are near their limits, could be implemented to reduce 

computational costs. However, one should be careful that the gain in computational time 

does not come at the cost of an unacceptable loss of local control over the stress 

distribution, as is for example explained by Le, Norato, Bruns, Ha and Tortorelli (2010). 

 

Another consideration is that also TTO might result in local rather than global optima, 

because of the MMA procedure. Namely, MMA is a gradient-based method that uses 

approximation functions to find updated design variables. A typical example of MMA 

heading towards a local optimum is given in Figure 14, which represents a case with two 
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design variables and three constraint functions. The suggested solution (away from the 

current solution) is logical from the perspective of the constraint function gradients and the 

lowest approximation function, however, clearly steers the solution to the local minimum 

on the right, instead of the global minimum on the left. As such, it is also possible to find 

tension-only structures by TTO. However, these less optimal configurations are limited for 

cases where the approximation functions are inaccurate. On the contrary, BESO and PTO 

lead to these less optimal configurations all the time, for all cases in which a higher 

compressive than tensile strength is included. 

 

 
Figure 14. MMA may direct to a local minimum, with the global minimum "out of sight", 

illustrated for two design variables and three constraints 

 

In conclusion, TTO provides more optimal results for stress-constrained volume 

minimizations with asymmetric stress limits in tension and compression than BESO and 

PTO, but shows significant higher computational costs. This is confirmed by the  

benchmarks used here and in literature. Moreover, TTO is not mislead by stress 

concentrations, whereas BESO and PTO put more material at highly stressed locations, 

which leads to a higher final volume fraction. Finally, in all benchmarks, the convergence 

of TTO is smoother than that of BESO and PTO. As a result of the forced material removal 

that can occur in BESO and PTO, these methods sometimes tend to remove critical 

elements from the design domain, causing an irreversible increase in the objective value. 

This forced change of material also makes the volume fractions in the final results of BESO 

and PTO more sensitive to the presence and magnitude of peak stresses, as compared to 

TTO. 
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5 2D application: building façade design 

Selecting TTO from the above 2D benchmarks, possibilities can be explored to apply TTO 

in a design-for-manufacturing tool for real world 3DCP applications. Real world problems, 

however, have many objectives and constraints. E.g. besides stress constraints, structures 

should also fulfil deformation and buckling constraints, and possibly other design criteria. 

Furthermore, a design-for-manufacturing tool especially should include constraints related 

to the manufacturing process. In this paper a start is made by illustrating the use of TTO in 

combination with (a) an additional design constraint (daylight) and (b) a print-path 

generator for the manufacturing process. 

5.1 Additional daylight constraint 

This section focusses on a case study in which a daylight-score for façade elements (Plak, 

2020) is combined with the above presented stress-constrained volume minimization with 

TTO. So next to the stress constraints, a façade is now also constrained to have a certain 

minimal daylight score. This daylight score is height dependent since more highly 

positioned openings cause light to enter further into the room, and so: 
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in which dls is the daylight score with dls smax0 ≤ ≤ , N is the number of finite elements, 

dlp is a penalty factor used to steer the optimization as much as possible to black-and-

white outcomes (similarly to SIMP), and ih is the height-factor of element i, which is 

constant throughout the optimization procedure and is calculated using a linear gradient 

over the height of the façade, with the lowest values at the bottom and the highest values 

at the top. This daylight score does not represent a full daylight analysis, but it does 

provide a useful surrogate model that may serve as a second type of constraint for the 

design problem. If this daylight factor is to be used in future work, it is recommended to 

investigate its applicability further, before applying the factor to large-scale real-world 

optimizations. 
 

First, a parameter study is performed. For this study, a design domain of 6x6 finite 

elements is used, of 1 × 1 mm with t = 1 mm, E = 1 MPa and ν = 0.3. The boundary 

conditions of the four-bar truss problem (see Figure 9) are applied with F = 1 N, p = 3,    
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dlp = 1, smax = 100,  and filtering is disabled ( rmin = 1). The lowest stress limit is taken 

as Lσ = 0.38 MPa for all simulations in the parameter study. The variable parameters are 

the prescribed minimum daylight score for the daylight constraint and the (relative) stress 

limits (i.e. equal strength, higher compressive strength, or higher tensile strength). All 

results of the parameter study are presented in Table 6. From this parameter study, several 

trends can be observed. 
 

 

 

Table 6. Parameter study for stress- and daylight constrained volume minimization 

No daylight constraint Daylight score > 50% Daylight score > 75% 

Lcσ = Ltσ  Lcσ = Ltσ  Lcσ = Ltσ  

   
Vol. fraction 0.652 
Daylight score 34.58 
Stress index* -0.000 
 

   
Vol. fraction 0.646 
Daylight score 50.00 
Stress index* 0.222 

   
Vol. fraction 0.414 
Daylight score 75.00 
Stress index* 0.940 
 

Lcσ = 3 Ltσ  Lcσ = 3 Ltσ  Lcσ = 3 Ltσ  

   
Vol. fraction 0.504 
Daylight score 50.82 
Stress index* -0.000 

   
Vol. fraction 0.558 
Daylight score 50.00 
Stress index* -0.000 
 

   
Vol. fraction 0.160 
Daylight score 91.78 
Stress index* -0.001 
 

3 Lcσ = Ltσ  3 Lcσ = Ltσ  3 Lcσ = Ltσ  

   (2) 
Vol. fraction 0.504 
Daylight score 48.34 
Stress index* -0.000 

   
Vol. fraction 0.609 
Daylight score 50.00 
Stress index* 0.066 

   (1) 
Vol. fraction 0.419 
Daylight score 75.00 
Stress index* 0.968 

* Max. Drucker-Prager stress minus limit value; negative value means stress constraints 

satisfied. 
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First, it can be concluded that the results are influenced by the presence and magnitude of 

the minimum daylight score. Namely, the results for which a daylight constraint was 

added differ from the results without a constraint on the minimum daylight score. Besides, 

for a simulation with a daylight constraint of 50% (i.e., a constraint that states that the 

daylight score ( dls ) should have a value higher than 50% of smax ) the daylight scores are 

generally lower compared to a simulation with a daylight constraint of 75%. Also, almost 

inevitably, if more daylight is required, volume fractions become lower. 
 

Secondly, the addition of the daylight constraint generally leads to asymmetrical solutions 

in which the material tends to be distributed to the bottom of the structure. This tendency 

seems to be steered by the daylight constraint, because even for a simulation with a higher 

tensile than compression strength (the bottom row in Table 6), a compression-only 

structure is shown for a daylight constraint of 75% (marked with (1)). This is different from 

the situation with only stress-constraints, where more material is distributed to the top of 

the structure (bottom row, result (2)), which is in line with the conclusions drawn in 

section 4. More research is required on how MMA manages the conflicting objectives and 

constraints, and how a more optimal solution can be achieved. See also section 7, future 

work. 

 

A third aspect that becomes clear in the parameter study is that adding a daylight 

constraint might result in over-constraining the optimization problem (i.e. not all 

constraints can be satisfied). Namely, for the simulations without a daylight constraint, the 

stress constraints are met, as is presented by the negative stress index in Table 6. Note that 

this stress index is calculated as the maximum Drucker-Prager stress value that is found in 

the structure minus its limit, so a negative stress index means that all stress constraints in 

the structure are satisfied. On the other hand, the results of the simulations with both 

stress- and daylight constraints regularly show violations of the stress constraints (i.e. a 

positive stress index). In case of violation of the stress constraints, a larger magnitude of 

the stress index indicates a more severe violation of the stress constraint by the most highly 

stressed element in the structure. As such, it can also be observed that for a more stringent 

daylight score, the stress violations generally become higher. 
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5.2 Print-path generator 

Besides additional objectives or constraints, a design-for-manufacturing tool should also 

allow for a translation of an optimized design into a printable geometry. For an illustration 

of future developments, here the print-path generation tool of Versteege (2020) is used. 

Versteege's tool translates 2D topology optimization results into printable geometries, 

including a defined print-path. For this, the geometry is first simplified by removing finite 

elements with densities lower than 0.5, whereafter a smooth contour line is found through 

the pixelated solution. Subsequently, members and nodes are identified in the smoothened 

structure, after which the centrelines and thicknesses of the members are determined. 

Using this information, the algorithm then determines the route that the printer should 

follow to construct the design. By printing at different speeds, the width of each printing 

layer can be varied from 40 mm to 80 mm. More details can be found in Versteege (2020). 

5.3 Building façade design: TTO, daylight maximization, print-path 

In this section a case study is presented in which the above-mentioned daylight-score 

(Plak, 2020) and the print-path generation tool (Versteege, 2020) are combined with TTO 

stress-constrained volume minimization. The case study treats a building façade that is 

subjected to a floor load and a wind load, as presented in Figure 15 (Bouw, 2020). To  
 

 

 

Input variable Value 

Length edge element 100 mm 

Element thickness 100 mm 

No. of elements hor. 40 

No. of elements vert. 25 

Young’s modulus 1 MPa 

Poisson’s ratio 0.2 

Minimum density 1e-3 

Penalty factor SIMP 3.0 

Filter radius 1.5 

Penalty factor daylight 3.0 

smax  (Equation 29) 10 

Tensile strength 18.5 MPa 

Compressive strength 18.5 MPa 

Figure 15. Design domain, boundary conditions, 

and load application of the façade, including 

general settings of the simulation 
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circumvent a possible over-constrained optimization problem, by too competitive 

constraints, as was seen in the previous section, it was decided to not add the daylight 

score as a constraint, but to make daylight maximization the objective. Besides, volume 

minimization is now omitted. Furthermore, it should be mentioned that this case study is 

regarded as an illustrative application to show the potential of the theory described in the 

current research, and to steer future research (Section 7). Therefore, no ready-to-use 

outcomes or thorough analyses of the results are provided yet. 

 

The optimized result for the stress-constrained daylight maximization of the façade in 

Figure 15 is shown in Figure 16 on the left. And using the print-path generation tool of 

Versteege (2020), the print path was obtained as shown in Figure 16 on the right. A façade 

design results that distributes the required loads; has allowable stresses; a maximized 

daylight score; and is printable. However, the shape of the printable geometry differs 

significantly from the pixelated design on the left. In the current study, it was not further 

investigated how close the printable geometry of Figure 16 is related to the optimal 

geometry it was based on, because the development and full analysis of the print-path 

generator is out of the scope of the research here. However, for further developments this 

should be studied in detail. Namely, removing low-density elements impacts the stress 

distribution in the structure. Alternatively, it might be beneficial to adapt TTO filtering 

types that provide better black-and-white solutions, e.g. as shown by Hofmeyer, 

Schevenels, and Boonstra (2017). On the other hand, developments in the 3DCP industry 

might lead to the possibility to print several materials simultaneously, or materials with  

 

    
 

Figure 16. Translation of a topology-optimization outcome (left) into a print-path for 3D concrete 

printing applications (right), using the print-path generation tool of Versteege (2020). A facade 

design results that distributes the required loads; has allowable stresses; a maximized daylight score; 

and is printable 
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reduced densities and reduced material properties. If so, grey-scale solutions might also 

become feasible to print. But all in all, it can be concluded that more research is required 

before topology optimization and 3DCP can be combined in a design-for-manufacturing 

tool. 

6 Conclusions 

The research presented here aims at providing a start in the development of a design-for-

manufacturing tool for 3DCP applications, by investigating which topology optimization 

method provides the most optimal results for a material with asymmetric stress limits in 

tension and compression. Consequently, three available topology optimization methods 

have been researched, in which stress constraints are represented by the Drucker-Prager 

yield criterion. Simulations show that Traditional Topology Optimization (TTO) with the 

Method of Moving Asymptotes (MMA) by Svanberg (1987) provides more optimal results 

than BESO and PTO, although this comes at quite higher computational costs. 

Furthermore, the total volume fraction in BESO and PTO is much more influenced by the 

presence and magnitude of peak stresses, and BESO and PTO do not show smooth 

convergence towards the optimal solution. Consequently, to obtain the most optimal 

results, it is recommended to use TTO for further developments. 

 

To illustrate some possibilities to apply TTO in the field of 3DCP, an additional daylight 

score constraint/objective was included in a case study, and a print path generation tool 

was applied. From the case study, it can be concluded that the optimization algorithm can 

be extended to include more objectives and constraints, however, local optima rather than 

global optima may be found as a result of the competitive nature of several objectives and 

constraints. More research is required to find out how to deal with this competitiveness, 

specifically for cases with asymmetric stress limits in tension and compression. 

6.1 Recommendations and future work 

Although TTO provides more optimal results than BESO and PTO, it is also by far the most 

time-consuming method. Therefore, computational costs should be reduced, e.g. via 

constraint grouping (Luo & Kang, 2012) or active set strategies (Bruggi & Duysinx, 2012) 

when real-world problems have to be solved. Moreover, the research here did not focus on 

multi-criteria optimization, and so more research has to be carried out on multi-criteria 
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optimization with the TTO method, and on how MMA handles trade-offs between 

competitive constraints. 

 

To develop a truly effective design-for-manufacturing tool for 3DCP, the TTO method 

itself may be improved as well. For example, a different filter might be applied that 

provides better black-and-white solutions, such that a practical interpretation of ‘grey’ 

material is not required (Hofmeyer, Schevenels, Boonstra, 2017). Furthermore, the 

structural model of the optimization algorithm might be improved, for example by adding 

the possibility to include self-weight or multiple load cases. Additionally, for enabling 

direct printing of the optimized results, manufacturing constraints should be included in 

the optimization process. 

 

It should be noted that the global optimum of a volume minimization problem with 

relaxed stress constraints exists of only void elements. However, the strains in these void 

elements are very large, and so the addition of an additional displacement constraint might 

be useful. 

 

Finally, based on the research presented here, for façade panels topology optimization for 

multiple materials (e.g. concrete and insulation) is investigated, including thermal 

performance as an objective (Youshi, 2021; Youshi 2022). Within that research, also multi-

scale modelling of the concrete material is tested (Jia, Misra, Poorsolhjouy, Liu, 2017; Bol 

2022). 
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