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Shape imperfections of 
reinforced concrete shell roofs 

B. Elferink, P. Eigenraam, P.C.J. Hoogenboom, J.G. Rots 

Delft University of Technology, the Netherlands          

The precise geometries of three reinforced concrete shell roofs have been measured with a 

laser scanner. The resulting point cloud has been modelled by NURBS surfaces. Two 

methods have been developed for determining the shape imperfections with lengths between 

0.5 and 5.5 m. The largest observed imperfection amplitude is 80 mm with a length of 5 m. 

The imperfections are represented by a variance spectrum and a normal distribution. A 

formula for the characteristic imperfection amplitude and the partial safety factor are derived. 
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1 Introduction 

Buckling of shell structures is sensitive to very small shape imperfections. Therefore, 

imperfections are added to finite element models for accurate nonlinear analysis. Often, 

the selected imperfection is equal to one of the buckling shapes, which can be obtained 

with a linear buckling analysis of the perfect shell [1]. The amplitude of this imperfection 

shape is very important for the shell strength (Koiter’s half-power law) [2]. Clearly, the 

imperfection amplitude depends on the tools and workmanship of the builders. It was 

always difficult to measure shape imperfections in concrete shells and therefore this was 

left to engineering judgement. However, with modern laser scanners, accurate 

measurements can be performed on a much larger scale than before. Using modern 

software the data can be processed to quantify shape imperfection lengths and amplitudes. 

 

In the presented research project, three reinforced concrete shell roofs have been measured 

by a laser scanner. These shells are Deitingen petrol station (1968), Heimberg swimming 

pool (1978) and Heimberg tennis hall (1978), all located in Switzerland. They have been 

designed by Heinz Isler and built by Willi Bösiger AG. The concrete was cast in situ on a 

formwork that consisted of steel scaffolding, curved glulam beams (approximately 180 x 50 
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mm spaced 800 mm) and wood floor board (Deitingen) or wood floor board and 

woodwool cement slabs as lost shuttering (Heimberg) [3, 4]. 

 

An overview of imperfections in all types of shell structure can be found in reference 5. 

Many imperfection measurements of airplane fuselages and rockets have been performed, 

though the conceived data base of imperfections seems to have not materialised [6]. Also 

reinforced concrete cooling towers are measured regularly, for example in reference 7 a 

reinforced concrete cooling tower is analysed showing a maximum shape deviation of 210 

mm. As far as the authors know, imperfection measurements of reinforced concrete shell 

roofs have not been published before. 

2 Measurements 

Several measuring methods have been considered for determining shape imperfections in 

large shell structures. Laser scanning appeared to be the best option by far in terms of 

accuracy, measuring time and ease of transportation of the equipment [8]. 

2.1 Scanner 

A laser scanner by Faro Technologies has been used [9]. The machine sends out laser 

pulses via a rotating mirror. The pulses reflect back from the measured surface to a light 

sensitive sensor on the machine. The machine measures the time it takes for the pulse to 

return. Subsequently, it calculates the distance to the point on the surface. The Cartesian x, 

y, z coordinates of a measured point are also calculated and stored. The machine rotates 

slowly to scan it’s surroundings (table 1). 

 

Table 1. Specifications of the laser scanner 

Faro Focus 3D X130  

range  0.6 – 130 m 

measuring speed  976 000 points per second 

ranging error  ± 2 mm at 25 m range, depending on the scanning speed 

2.2 Scanning and data processing 

The measurements have been performed on 2, 3 and 4 January 2015 [8]. Shells at five 

locations have been scanned. Not all data were usable due to obstacles in the scan field. 

Approximately, four scans of each shell have been made. A scan took less than half an 
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hour. During the scanning, protection binoculars are not necessary, therefore, it was 

possible to scan the swimming pool during opening hours (fig. 1). The point clouds that 

were used in this study are available on internet. 

 

heronjournal.nl/61-3/scans.zip 

scan1.txt Deitingen petrol station North; scan2.txt Deitingen petrol station South; 

scan3.txt Heimberg swimming pool; scan4.txt, Heimberg tennis hall 

 

The points can be exported to most CAD programs by the program Scene [9]. Shell parts 

directly above the scanner have been scanned with an excessive amount of points, 

therefore, redundant points can be removed by the program CloudCompare [10]. To this 

end also Matlab [11] has been used. If a shell is scanned from several positions the data sets 

can be merged using spherical markers visible in each set. The program Rhino 5.0 has been 

used for analysing the point cloud [12]. The number of points need to be less than 1 million 

to prevent overload on a normal PC. Points on lamps, cables, and other objects were 

removed by hand. 

2.3 Buckling lengths 

The largest buckling length of cylindrical shells can be calculated by 1.7 r t , where r is the 

shell radius of curvature and t is the shell thickness. The formula can also be used to 
 

 

Figure 1. Point cloud of Heimberg swimming pool 

The swimming pool has been scanned on the inside but the point cloud is observed from the outside. 
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estimate the buckling lengths of doubly curved shells [13]. The calculated buckling lengths 

are shown in table 2. The radii have been measured at the shell tops and the thicknesses 

have been obtained from literature [3, 4]. Buckling is particularly sensitive to imperfections 

with lengths that are approximately equal to the buckling length. In order to be rigorous, 

shape imperfections up to 6.0 m have been studied. 

 

Table 2. Dimensions of the shell structures 

 thickness radius of curvature buckling length 

Deitingen petrol station 90 mm 25.2 m 2.6 m 

Heimberg swimming pool 90 21.7 2.4 

Heimberg tennis hall 95 25.0  short direction 2.6 

  45.3  long direction 3.5 

 

3 Surface fitting 

A CAD program can fit a surface through a point cloud. The surface is a NURBS that is 

defined by control points. In the fitting process the control points are moved automatically 

in order to minimise the sum of all squares of the distances between the measured points 

and the surface. The more control points a NURBS surface has, the more accurately it can 

be fitted to the point cloud. 

As a test, three artificial point clouds have been created with a length and width of 10 m. 

The coordinates of the points are described by
ππ= 50sin sin

yx
z

l l
, where l is the half wave 

length. Three half wave lengths were considered, l = 500, 1000 and 1500 mm. The 

amplitude is 50 mm. NURBS surfaces with varying control point spacing have been fitted 

through these point clouds. The accuracy statistics – mean of the point distances to the 

surface – are plotted in figure 2. It can be observed that a NURBS surface with less than one 

control point per half-wave length cannot be fitted accurately, while a NURBS surface with 

more than one control points per half-wave length can be fitted accurately. 
 

The conclusions is that a fitted NURBS surface does not describe an imperfection if the 

spacing between the control points is greater than the imperfection length. Based on this 

observation two methods were developed to quantify the shape imperfections. The single 

surface method and the double surface method. 
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number of control points per half-wave length 

Figure 2. Accuracy of surface fitting for varying control point spacing 

4 Single surface method 

In the single surface method a surface is positioned between the point cloud. This surface 

is a square NURBS with evenly spaced control points. The surface is fitted to the point 

cloud. This is repeated with different distances between the control points. For each fit the 

mean distance and standard deviation of the distance of the points to the surface were 

determined by Rhinoceros (table 3). The statistics of Rhinoceros do not distinguish 

between points above and below a NURBS. The distribution of the point distances 

typically looks like the right half of a normal distribution. However, in the present study 

we do need to make a distinction between points above (positive) and below (negative). 

Therefore, the half distribution is transformed to a full distribution. The details of this are 

explained below. 

In table 3 the variation coefficients (standard deviation over mean) vary between 0.67 and 

0.91; the average is 0.79. The half-normal probability density function has a variation 

coefficient of 0. 76. Several other density functions have been considered but none came as 

close as the half-normal probability density function, therefore, this function was selected. 
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On average half the data points are above the NURBS surface and half the points are 

below. Therefore, a sign can be assigned to the distances, obtaining the normal probability 

density function. 

ζ−
= − ∞ < ζ < ∞

π

2( )1 bP e
b

 (2) 

Its mean is 0 and the standard deviation is
2

b
. 

 

Table 3. Fit results of the single surface method 

control point spacing [m] 1.0 2.0 3.0 4.0 5.0 6.0 

Deitingen petrol station North 

mean μ [mm] 2.51 5.11 7.31 9.46 13.16 20.61 

standard deviation [mm] 2.03 3.72 5.62 7.57 8.91 15.25 

Deitingen petrol station South 

mean μ [mm] 2.85 4.69 6.51 8.16 12.43 17.58 

standard deviation [mm] 2.42 3.90 5.26 6.58 8.34 12.78 

Heimberg swimming pool 

mean μ [mm] 1.94 3.40 4.15 4.81 5.36 5.67 

standard deviation [mm] 1.66 2.69 3.42 4.03 4.87 5.17 

Heimberg tennis hall 

mean μ [mm] 1.50 2.76 4.03 4.30 6.08 9.88 

standard deviation [mm] 1.20 2.18 3.10 3.48 4.53 7.24 

 

Variance is the square of the standard deviation. Therefore, 
 

π= = μ
2

2

2 2
b

V  (3) 

 

where V is the variance of the signed distances and μ is the mean of the distances 

computed by Rhinoceros. The results are shown in figure 3. 
 

It is assumed that the signed distances d can be described as a stochastic field. 
 

ππ= + ζ + ξ sin( )sin( )i i i
i i

yx
d a

l l
, (4) 

 

where ia is an imperfection amplitude, il is an imperfection length and ζi , ξi are random 

phase shifts between 0 and 2π. The variance of this field is 
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= =
= =  2 21

2 4
0 0

1 l l

i
x y

V d dx dy a
l

, (5) 

 

where = Π il l . Consequently, variance can be decomposed in amplitudes of imperfection 

lengths. 

 
 

 

Figure 3. Fit results of the single surface method for the measured shells  

 

Figure 3 shows the variance of all imperfections with a length smaller than 6 m; smaller 

than 5 m; smaller than 4 m, et cetera. Therefore, the variance of imperfections with lengths 

between, for example, 4 and 5 m can be obtained by subtraction. According to equation 5 

the amplitude of the associated imperfections can be obtained with 
 

= Δ4ia V . (6) 

 

The result is shown in table 4 and figure 4. It is observed that the Heimberg shells have 

been built more accurately than the Deitingen shells.1 Figure 4 is a practical version of the 

variance spectra of stochastic fields. It may be used in stochastic finite element analyses. 

 

                                                                    

1 The Heimberg shells have an inner surface of woodwool cement slabs. The Deitingen shells 

have not. However, this is not the cause of the difference in imperfection amplitude. Woodwool 

cement slabs are still produced today. They have dimensions 0.6 × 1.3 m and a thickness 

tolerance of ± 4 mm. 

π= μ2

2
V

variance of
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Table 4. Imperfection amplitude ai [mm] for several imperfection lengths li [m] 

imperfection length [m] 0.0–1.0 1.0–2.0 2.0–3.0 3.0–4.0 4.0–5.0 5.0–6.0 

Deitingen petrol station North 6.3 11.2 13.1 15.1 22.9 39.8 

Deitingen petrol station South 7.1 9.3 11.3 12.3 23.2 31.4 

Heimberg swimming pool 4.9 7.0 6.0 6.1 5.9 4.6 

Heimberg tennis hall 3.8 5.8 7.4 3.8 10.8 19.5 

 

 

 

Figure 4. Imperfection amplitude ai [mm] for several imperfection lengths li [m] 

 

5 Double surface method 

In the double surface method two surfaces are fitted through the point cloud. The first 

surface is a NURBS with control points spaced at 0.25 m. This surface can accurately match 

the shape including imperfections with half wave lengths of 0.25 m or longer. The second 

surface is a NURBS of the same size with control points spaced at a much larger distance, 

for example 3.00 m. This surface describes the shape of a shell without imperfections. The 

second control spacing should be much smaller than the shell dimensions, otherwise the 

shape of the shell would be distorted. If possible, the second control point spacing should 

be somewhat larger than the buckling length because imperfections of that length have the 

most influence on the shell buckling behaviour. 

Deitingen petrol station North

Deitingen petrol station South

Heimberg tennis hall

Heimberg swimming pool
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5.1 Plot results 

The distance between the two surfaces is plotted in figures 5 to 8. This is accomplished by 

projecting a grid of points at both NURBS surfaces in a direction mostly perpendicular to 

the surfaces. So, each grid point has two projected points. The distances between each of 

these projected points are the distances between the surfaces. In the contour plots the 

largest imperfection amplitude and the corresponding imperfection length can be 

observed. The results are summarised in table 5. 

 

 

Figure 5. Shape imperfections in the North roof of Deitingen petrol station 

Patch of 33 x 21 m; control point spacings of 0.25 and 4.70 m; largest observed imperfection 

amplitude is 64 mm 
 

 

 

Figure 6. Shape imperfections in the South roof of Deitingen petrol station 

Patch of 33 x 21 m; control point spacings of 0.25 and 4.70 m; largest observed imperfection 

amplitude is 60 mm 
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Figure 7. Shape imperfections in the roof of Heimberg swimming pool 

Patch of 29 x 28 m; control point spacing of 0.25 and 5.00 m; largest observed imperfection 

amplitude is 80 mm 

 

 

 

Figure 8. Shape imperfections in the roof of Heimberg tennis hall 

Two patches of 12 x 12 m; control point spacing of 0.25 and 4.00 m; largest observed imperfection 

amplitude is 23 mm 
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The focus on the largest imperfection in a shell structure seems over-conservative. A 

structure does not need to fail at the location of the largest imperfection. As an example 

consider a brick wall with openings for doors and windows. It would be extremely 

coincidental if at the location of the smallest strength also the largest stress occurs. 

However, shells roofs are an exception. They are optimised to have approximately the 

same compressive stress everywhere. 2 If a perfect shell would be possible, it would have 

many buckling modes with corresponding buckling load factors that are almost the same. 

Therefore, shells buckle at the location of the largest imperfection. The place of this 

imperfection makes almost no difference. 

 

Table 5. Largest observed imperfection amplitudes in the double surface method 

 peak d̂  [mm] 
  

length  l [m] 
 

area [m2] 

Deitingen petrol station North 64 4.70 346 

Deitingen petrol station South 60 4.70 346 

Heimberg swimming pool 80 5.00 727 

Heimberg tennis hall 23 4.00 288 

 

The Heimberg largest deviations have been transformed to an area of 346 m² and a length 

of 4.70 m by equation 11. For this area and length the largest deviations of the shells are 64, 

60, 62.5 and 25.9 mm respectively.3 The mean of the latter values is 53.1 mm and the 

standard deviation is 18.2 mm. Assuming a normal distribution, the 5% characteristic value 

of the largest imperfection is 53.1 + 2.68 × 18.2 = 101.9 mm. The factor 2.68 is used instead 

of 1.64 because only four measurements are available. This is a recommended procedure in 

design by testing based on an unknown standard deviation [14, table D1]. Note that the 

consequence of only four measurements is an increase of the standard deviation by a factor 

2.68/1.64 = 1.63. 

 

 
                                                                    

2 The word “compressive stress” is not accurate here. It should be “buckling membrane force”. 

However, defining the buckling membrane force would make the argument unclear. We leave 

this for another paper. 

3 Thus, the results of Section 5.1 depend on the results of Section 5.3. Also, the results of Section 

5.3 depend on the results of Section 5.1. This can be considered circular reasoning. However, the 

results converge quickly to the present values, therefore, it does not pose a problem. 
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5.2 Partial factor 

When designing a shell structure it is not practical to perform nonlinear probabilistic 

analyses. Therefore, safety factors need to be derived. Partial factors of material strengths 

and loads are calculated with the following formulas [14]. 
 

−γ =
− α β
1

1
R

R
R R

kV
V

, (7) 

− α β
γ =

−
1

1
S S

S
S

V
kV

, (8) 

where k defines the characteristic value, αR and αS are the sensitivity factors of material 

strengths and loads, β is the reliability index, RV and SV are the variation coefficients of 

material strengths and loads respectively. These formulas are very accurate for 

independent normally distributed variables when the sensitivity factors are known. 

 

Shape imperfections could be related to self-weight and to extreme weather, however, it 

seems realistic to assume that the imperfections and the loading are sufficiently 

independent. A normal distribution is realistic for self-weight, however, snow load is 

better represented by a Gumbel distribution. Moreover, the distribution function of the 

largest shape imperfection is simply unknown. As an approximation we choose normal 

distributions for all stochastic variables. In theory, sensitivity factors are the result of a 

probabilistic finite element analysis, which is rather impractical. Fortunately, sensitivity 

factors can be conservatively estimated. 

 

Shape imperfections act as load on shell structures therefore the later of the two formulas is 

applied. In the following section, the 5% characteristic value of the imperfection amplitude 

is used. The associated value of k is –1.64. The recommended sensitivity factor for a 

dominant load is αS = –0.70. In case the imperfections are not dominant αS = –0.28 [14, 

table E3]. Shell structures tend to fail abruptly which surely leads to loss of live. Also it is 

not very expensive to build a thicker shell. Therefore, an annual failure probability 

of −510 or smaller is appropriate. The associated value of β is 4.3 [14, table E2]. The 

variation coefficient of the imperfection amplitude is standard deviation over mean 1.63 × 

18.2/53.1 = 0.559. Consequently, the partial factor of the imperfection amplitude is 

 
+ × ×γ = =

+ ×
1 0.70 4.3 0.559

1.40
1 1.64 0.559

. (9) 
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This large partial factor is partly caused by the factor 1.63 which accounts for the 

uncertainty of using only four measurements. 

5.3 Characteristic imperfection 

In the previous sections, a normal distribution is adopted for the largest imperfection 

amplitude. The distribution is determined for an imperfection length of l = 4.7 m and a 

shell area of A = 346 m2. The characteristic value of 101.9 mm needs to be extrapolated to 

other values of l and A. In Figure 4 it can be observed that the imperfection amplitude is 

approximately linear in l. Therefore, a linear relation is assumed between the mean of the 

largest imperfection amplitude and l. 

There are few measurements available for extrapolating the imperfection amplitude in A. 

Fortunately, probability theory gives a clue on how to extrapolate. The Gumbel 

distribution and the Fréchet distribution describe positive maxima and can be 

mathematically transformed to other shell areas [15]. Both distributions have very a 

different shape than the normal distribution and there is no reason to assume that they can 

describe the four measurements well. Therefore, this aspect of the distributions is not used. 

The only aspect that is used is how the characteristic value changes with A (fig. 9). We 

selected the Fréchet distribution because it does not have negative amplitudes and its 

coefficient of variation is not affected by the transformation. 

 

 

Figure 9. Fréchet distribution of the maximum imperfection amplitude for areas 20, 100 and 500 m2 

 

The Fréchet distribution is 
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ξ

ˆ( ) exp( )
b

b
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P d  (10) 

Its mean is Γ − 1
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b
 and the standard deviation is Γ − −2 22

(1 ) meanu
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In the previous section it is shown that for an area of 346 m² the largest imperfection 
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amplitude has a mean of 53.1 mm and a standard deviation of 1.63 × 18.2 mm. These 

values are accurately produced by b = 3.3392 and u = 40.93 mm. 

The mean imperfection amplitude is linear in the imperfection length l. For the 

measurements the imperfection length is 4700 mm. Therefore, it can be written that 
 

= =40.93 mm
114.8

l
u  (11) 

 

The Fréchet distribution has the property that the maximum of n maxima also has a 

Fréchet distribution. 4 For the new distribution the value b remains the same and the value 

of u becomes bu n . Therefore, a shell with a surface area n times larger than the considered 

surface can be represented by 

≤ ξ = −
ξ

ˆ( ) exp( )
b

b
nu

P d . (12) 

The considered surface of 346 m2 is 15.7 times the imperfection length squared.  

=
215.7

A
n

l
. (13) 

Substitution of equation 11 and 13 in 12 and rewriting gives 

−ξ =
−

1
3.34

2
( )

114.8 15.7 ln(1 )

l A

l P
 (14) 

Assuming a characteristic value (P = 5%) the equation simplifies to 
 

ξ =
0.40.3

108
A l

 (15) 

 

As a check, the values of A = 346 m2 and l = 4.7 m are substituted into the equation. 
 

ξ = = =
0.40.3346 4.7

0.0993 m 99.3 mm
108

, (16) 

 

which is almost the same as the characteristic value of 101.9 mm. 

 

Equation 9 and 15 can be used in shell design. For example, consider a large reinforced 

concrete shell roof with a surface area of 1000 m2. A finite element analysis shows that the 
                                                                    

4 A proviso is that the maxima are independent. In other words, the imperfections on the left 

hand side of a shell need to be independent of the imperfections in the right hand side, which we 

think is fulfilled on account of the construction process. 
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buckling length is 2 m. As an imperfection, the buckling shape is added to the finite 

element model with an amplitude of 
 

ξ = = =

ξ = ξ =

0.3 0.41000 2
0.097 m 97 mm

108
1.4 136 mm

c

d c

 

 

The authors do not think that Equations 9 and 15 are very accurate because they are based 

on only four scans. Nonetheless, Equation 15 includes all important parameters and the 

unit length is correctly represented. It is not unreasonable to expect that future 

measurements will show that this simple formula is useful, provided that the numbers 1.4, 

0.3, 0.4 and 108 are somewhat adjusted. 
 

6 Conclusions 

• Modern laser scanners are very suitable for accurately measuring the shape of shell 

structures. 

• A NURBS surface can be fitted through the measured data points. Shape imperfections 

with a length smaller than the control point spacing are not described by the NURBS 

surface. 

• The statistics of surface fits for varying control point spacing can be used to determine the 

variance spectrum (Single surface method). 

• The imperfections can be visualised as the distance between two surface fits. The first 

surface fit is accurate with a small control point spacing. The second surface fit is less 

accurate but still smooth with a control point spacing somewhat larger than the buckling 

length (Double surface method). 

• The largest observed shape imperfection in the three reinforced concrete shell structures is 

80 mm. This imperfection has a length of 5 m. 

• The data has been used to determine a formula for the characteristic value of the shape 

imperfection amplitude. The formula depends on the imperfection length and the shell 

surface area, therefore, it includes a size effect. If buckling is the dominant failure mode 

then the partial factor for the imperfection amplitude is 1.40. 
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