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Shear stresses around circular cylindrical 
openings 
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In this paper stress concentrations are studied around circular cylindrical openings or voids in 

a linear elastic continuum. The loading is such that a uniform shear stress occurs in the 

continuum, which is disturbed by the opening. The shear stress is in the direction of the 

centre axis of the opening. The stress distribution has been determined both analytically and 

numerically. It is shown that a peak shear stress occurs next to the opening. The peak shear 

stress is twice the shear stress at a large distance of the opening. In addition, a lining has been 

considered and formulas have been derived to calculate the stresses in the lining.       

The results are applied to a reinforced concrete bore tunnel in a soft soil. The soil is deformed 

in shear at the connection of the tunnel to a ventilation shaft. It is shown that large shear 

stresses can occur in the concrete due to minor differential settlements. 

Key words: Stress concentration, shear, cylindrical opening, cylindrical void, lining, tunnel, soft 

soil, reinforced concrete 

1 Introduction 

The considered situation is shown in Figure 1. A cylindrical opening is enclosed by an 

infinite continuum. The continuum is loaded such that a uniform shear stress occurs, 

which is disturbed by the opening. The shear stress is in the direction of the opening axis. 

Around the opening stress concentrations occur which are analysed in this paper.  

 

Stress concentrations around openings in solids and plates have been studied intensively. 

Many of the results are summarised by Savin (1961), Timoshenko et al. (1970), and Pilkey 

(1997). Stresses around cylindrical openings, representing tunnels, have been studied by 

Mindlin (1939) and Yu (1952). However, as far as the authors know, the situation 

considered in this paper has not been published before. This can be considered remarkable 



 156 

because the analysis shows to be rather elementary and the result is quite relevant to civil 

engineering. 

 

Stress concentration factors for normal stresses or shear stress in planes perpendicular to 

the centre line of the cylindrical opening are not considered in this paper. These can be 

simplified to two dimensional problems for which solutions are available in literature.1  

2 Analytical solution 

The derivation uses both cylinder coordinates x, r, ϕ and Cartesian coordinates x, y, z (Fig. 

2). The reason for using two coordinate systems is that it is convenient to calculate the 

boundary stresses in cylinder coordinates and the far field stresses in Cartesian 

coordinates, as will be shown. The following displacement field is proposed 
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The symbols a, r and ϕ are explained in Figure 2. Symbol G is the shear modulus and τ is a 

parameter that will be interpreted below. It will be shown that this displacement field, 
 

 
Figure 1. Shear stress concentration in a continuum around a cylindrical opening 

                                                                    
1 Most stress concentration problems for cylindrical openings can be simplified to a two 

dimensional plane strain problem or to a two dimensional plane stress problem. It is noted that 

plane strain problems have the same stress solutions as plane stress problems. 
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Figure 2. Reference systems, dimensions and displacements for the analytical solution 

 

which has been found by trial and error, provides the correct solution to the problem of 

this paper. From Eq. (1) it follows that the displacements in the radial and tangential 

directions are 
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The strains in cylindrical directions are 
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The stresses are 
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At the opening edge (r = a) the stresses are 
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In Cartesian coordinates xu (Eq. 1) becomes
2
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+
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G y z
. From this, the strains in 

the x, y, z directions can be derived. 
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The stresses are 
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The equilibrium equations are 
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which are correctly fulfilled. From Eq. (7) and (6b) follows that in the far field (r → ∞ ) the 

stresses are 
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From Eq. (5) is concluded that the stresses on the opening edge are zero, which is the 

correct boundary condition. From Eq. 9 is concluded that τ is a uniform shear stress in the 

continuum which is the correct loading. In addition, all equations of the linear theory of 

elasticity have been fulfilled. Therefore, the proposed displacement field Eq. (1) provides 

the correct solution to the problem of this paper. 

The maximum shear stress occurs at (y = ± a , z = 0) 2 
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This follows from both Eq. (5) as Eq. (7). 

3 Numerical solution 

A finite element study has been performed using the program Ansys (Weelden 2010). The 

opening, with a radius of 2.5 m, is embedded in a square block of 50 x 50 x 50 m. Young’s 

modulus E = 200000 N/mm² and Poisson’s ratio ν = 0.3. The element size is approximately 

0.5 m close to the opening and larger at the block edges (Fig. 3). The element types used are 

SOLID45, which is an 8 node hexahedron and SOLID92 which is a 10 node tetrahedron. A 

shear displacement of 1 m is imposed to one of the block edges deforming it to a rhombic  

 

 
 

Figure 3. Tetrahedral finite element mesh of the 

front face 

Figure 4. Imposed deformations on the model 

edges. In addition, one node is fixed in the y 

direction. 

 
                                                                    

2 This maximum shear stress of 2τ been suggested before by Hoogenboom et al. (2005). 
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 shape (Fig. 4).3 A static linear elastic analysis has been performed. The results show a 

shear stress next to the edges of the block of 1538 N/mm² (Fig. 5). The largest shear stress 

is 3102 N/mm², which occurs in the middle of the block next to the opening. Therefore, the 

stress concentration factor is 3102/1538 = 2.017. The analysis has been repeated for 

different values of Young’s modulus, Poisson’s ratio and the imposed deformation. This 

did not result in significant changes in the stress concentration factor. The analysis has 

been repeated for several element sizes. For a very fine finite element mesh the stress 

concentration factor is close to two. Also, the analysis has been repeated for several block 

sizes. For smaller block sizes both the concentrated stress and the stress in the block edges 

increase significantly. 

 

In total 50 finite element analyses have been performed. The mean stress concentration 

factor is 1.996. The standard deviation is 0.017. The null hypothesis is, “the stress 

concentration factor is two”. A 5% error is accepted in falsely rejecting the null hypothesis. 

The reliability boundaries are 2 – 2.01 x 0.017/ 50 = 1.995  and  2 + 2.01 x 0.017/ 50  = 

 

 
            Figure 5. Shear stress σxz in the middle section of the block 

                                                                    

3 In retrospect, a 1 m slice of the block could have been analysed if a continuity condition would 

have been imposed on the boundaries x = 0.5 m and x = -0.5 m. This would enable the use of 

meshes of prismatic elements of unity lengths. 
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2.005, where 2.01 is 2.5% critical value of the Student distribution of 49 degrees of freedom. 

Since 1.995 < 1.996 < 2.005 the null hypothesis cannot be rejected. 

4 Lining stresses 

A lining is introduced that covers the surface of the opening (Fig. 6). It has a thickness t 

and a shear stiffness lG t . The shear deformation γ of the lining is the same as that of the 

continuum edge. 
 

( , )ϕγ = γ = ϕx r a . (11) 

 

The constitutive equation of the lining is 
 

= γln G t , (12) 

where n is the lining distributed shear force (N/m) in a cross-section of the opening. The 

lining is loaded by the shear stress σxr at the continuum edge. It is assumed that normal 

stresses do not occur in the lining, which hereafter is shown to be true.4 The lining 

equilibrium equation is (Fig. 6) 
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Figure 6. Equilibrium of an elementary part of the lining 
                                                                    

4 Problems in elasticity theory have a solution and just one solution (existence and uniqueness). 

Therefore, when a solution is found that fulfills all equations than this solution is the solution. 

The fact that some stresses are assumed to be zero is not an approximation but just part of the 

solution. 
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This can be evaluated to 
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The following displacement field is proposed 
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where k is a parameter that is interpreted below. It is noted that when k = 0 the 

displacement is equal to that of the previous chapter. It will be shown that Eq. (14), which 

has been found by trial and error, provides the correct solution to the problem of this 

paper including a lining. 

It can be shown that for this displacement field the equilibrium conditions, Eq. (8), are 

fulfilled too. Also the far field conditions, Eq. (9), are fulfilled. The shear strains in the 

radial and tangential directions are 
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In the continuum edge (r = a) the shear stresses are 
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Substitution of Eq. (11) and (15) in Eq. (12) gives 
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Substitution of Eq. (17) and (16) in Eq. (13) and evaluation gives 
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Apparently, k is a dimensionless parameter that describes the stiffness properties of the 

lining compared to the continuum. With this result, all equations of the continuum and the 

lining are fulfilled. Also, the far field stress state (Eq. 9) is fulfilled. Also, compatibility (Eq. 

11) and equilibrium (Eq. 13) between the continuum and the lining are fulfilled. Therefore, 

the proposed displacement field Eq. (14) provides the correct solution to the problem of 

this paper including a lining. 

 
 

The resulting shear stress in the edge of the continuum can be obtained from Eq. (16) 
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For 0 1≤ <k the extreme value is 
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which occurs at 0ϕ = . For k = 1 there is no extreme value because there is no disturbance 

in the continuum stress field. For k > 1 the extreme value is 
 

max
2

1
τ = τ

+
k
k

, (21) 

 

which occurs at 1
2ϕ = ± π . This result is shown in Figures 7 and 8. 

From Eq. (17) and (18) the maximum shear stress in the lining is obtained 
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which occurs at 0ϕ = for any k. 

 

 
Figure 7. Continuum and lining deformation for three types of stiffness k 
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Figure 8. Stress concentration factor maxτ
τ

in the continuum as function of the lining stiffness k  

 

It can be practical to express k in Young’s modulus lE of the lining and Young’s modulus E 

of the continuum, provided that Poisson’s ratio of lining and soil are the same. 
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5 Tunnel stresses 

Bore tunnels in soft soils often have reinforced concrete linings with a thickness of 

approximately radius/10. The lining typically consists of connected concrete segments. 

Young’s modulus of concrete including the connections is approximately 10000 N/mm². 

The stiffness of soil strongly depends on the confinement pressure. At a depth of 10 m soil 

can be modelled as an elastic continuum with Young’s modulus 100 N/mm².  

Consequently, the stiffness parameter k can be calculated by (Eq. 23). 
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At regular intervals a tunnel is interrupted by vertical ventilation shafts. A shaft is loaded 

differently than the tunnel parts. Also, the shaft foundation is in different soil layers than 

the tunnel. Consequently, shaft and tunnel experience different settlements (Fig. 9). This 

situation can be modelled by the problem that is solved in this paper. The soil deformation 

is approximated with a homogeneous shear strain. Due to this a homogeneous shear stress 

τ occurs which is disturbed by the tunnel. 

 

The maximum shear stress in the soil is (Eq. 21) 
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max
2 2 10 1.8

1 1 10
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which occurs next to the top and bottom of the tunnel lining. The maximum shear stress in 

the concrete lining is (Eq. 22) 
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This is a considerable stress concentration. It is noted that often the soil and concrete 

properties cannot be determined accurately. Fortunately, large variations in k have little 

influence on the results of this chapter. For example if k = 2, which is only 20% of the 

previous value then the concrete lining stress is n/t = 13.3 τ, which is still 73% of the 

previous value. 

 

Clearly, both the soil and the reinforced concrete tunnel segments behave nonlinearly, 

which is not included in the above linear analysis. Self weight and the construction process 

cause stresses in the soil and the lining. In addition, the settlement considered in this paper 

can occur. The soil can yield at the connection with the tunnel which might unload the 

concrete. Nevertheless, the present linear analysis of the additional settlement load 

predicts that before yielding the maximum additional concrete stresses are ten times larger 

than the maximum of the additional soil stresses. It is not unlikely that the already heavily 

loaded concrete crushes before the soil yields. More research is needed for validation of 

this conclusion. 

 

 

 
         Figure 9. Differential settlements around a bore tunnel connected to a ventilation shaft 
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6 Conclusions 

A factor two stress concentration occurs in a continuum with a circular cylindrical opening 

loaded in shear in the direction of the opening centre line. This result does not depend on 

the opening diameter or on Young’s modulus. Contrary to spherical openings this stress 

concentration does not depend on Poisson’s ratio. 

Also for cylindrical openings with a lining, closed form solutions have been derived for the 

stress concentration in the continuum and in the lining. The stress concentration factor for 

the continuum varies between one and two depending on the lining stiffness. 

Application to a typical bore tunnel in soft soil with a reinforced concrete lining shows that 

small differential settlements causing small shear stresses in the soil can give large shear 

stresses in the lining. The shear stress in the concrete lining can be as much as 18 times 

larger than the shear stress in the soil at some distance of the tunnel. 

Literature 

Calladine C.R. (1983) “Theory of shell structures”, Cambridge University Press 

Hoogenboom P.C.J., Spaan R. (2005) “Shear Stiffness and Maximum Shear Stress of Round 

Tubular Members”, 15th International Offshore and Polar Engineering Conference (ISOPE-

2005), Seoul, June 19-24, 2005, Vol. 4, pp. 316-319 

Mindlin R.D. (1939) “Stress distribution around a tunnel”, Proceedings of the American 

Society of Civil Engineers, Vol. 65, No. 4, pp. 619-642 

Pilkey W.D., Pilkey D.F. (2008) “Peterson’s stress concentration factors”, Third edition, John 

Wiley & Sons, New York 

Savin G.N. (1961) “Stress concentrations around holes”, Translated from Russian by Gros 

and Johnson, Pergamon Press, Oxford 

Timoshenko S.P., Goodier J.N. (1970) “Theory of Elasticity”, third edition, McGraw-Hill 

book company, Singapore 

Weelden C. van (2010) “Schuifspanningen loodrecht op een cilindrisch gat”, Bachelor 

report, Delft University of Technology (In Dutch), online: http://www.mechanics.citg. 

tudelft.nl/~pierre/BSc_projects/BSc_projects.html/eindrapport_van_weelden.pdf 

Yu Y.Y. (1952) “Gravitational stresses on deep tunnels”, Transactions of the American Society 

of Mechanical Engineers, Applied Mechanics Section, Vol. 74, pp. 537. 

 



 167 

Notation 

a  ………………… opening diameter 

E  ………………... Young’s modulus of the continuum 

lE  ……………….. Young’s modulus of the lining 

G  ……………….. shear modulus of the continuum 

lG  ………………. shear modulus of the lining 

k  ………………… dimensionless stiffness factor of the lining 

n  ………………... in plane shear force per unit length in the lining 

r  ………………... radial coordinate (Fig. 2) 

t  ………………… lining thickness 

, ,x y zu u u  ……… displacements of a continuum point (Fig. 2) 

, ϕru u  ………….. displacements of a continuum point in cylinder coordinates (Fig. 2) 

, ,ε ε εxx yy zz  …… normal strains of a continuum point 

ϕ  ………………... angle coordinate (Fig. 2) 

γ  ………………... shear strain in the lining 

, ,γ γ γxy xz yz  …… shear strains of a continuum point 

, ϕγ γxr x  ………… shear strains of a continuum point in cylinder coordinates 

, ,σ σ σxx yy zz  …… normal stresses of a continuum point 

, ,σ σ σxy xz yz  …… shear stresses of a continuum point 

, ϕσ σxr x  ………… shear stresses of a continuum point in cylinder coordinates 

τ  ………………… far field shear stress in the continuum 

maxτ  ……………. peak stress in the continuum 
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Appendix 

In this appendix is shown that Eq. (13) can also be derived from the membrane theory of 

thin shells. For this a new reference system x, y, z is selected in the middle surface of the 

tunnel lining (Fig. 10). This reference system follows the lining such that the new z-axis is 

always perpendicular to the lining. The equilibrium equations for membrane forces in thin 

shells are, Calladine (1983) 
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In which the factors k are the shell curvatures and the terms p are the shell loading. For the 

lining 1= −xk a , 0=yk , xyk = 0, ( , )ϕ= σ = ϕx rp r a , ( , )= σ = ϕy xrp r a  and 

( , )= σ = ϕz rrp r a . In the notation of this paper the lining shear force is n, therefore, =xyn n . 

In addition, =yy xxn n , ϕϕ=xxn n . Subsequently, Eq. (24) can be written as 
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Since, all derivatives to x are zero, the last line of Eq. (25) can be written as 
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which was to be proven. 

 
Figure 10. Reference system of the shell equilibrium equations 
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