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Probabilistic design of structures is usually based on estimates of design loads with a large 

average return period. Design loads are often estimated using classical statistical methods. A 

shortcoming of this approach is that statistical uncertainties are not taken into account. In this 

paper, a method based on Bayesian statistics is presented. Using Bayes’ theorem, the prior 

distribution representing information about the uncertainty of the statistical parameters can be 

updated to the posterior distribution as soon as data becomes available. Nine predictive 

probability distributions are considered for determining extreme quantiles of loads: the 

exponential, Rayleigh, normal, lognormal, gamma, Weibull, Gumbel, generalised gamma and 

generalised extreme-value. The Bayesian method has been successfully applied to estimate the 

discharge of the rivers Rhine and Meuse with an average return period of 1,250 years while taking 

account of the statistical uncertainties involved. In order that the observations ‘speak for 

themselves’, the non-informative Jeffreys priors were chosen as priors. The Bayes estimates are 

compared to the classical maximum-likelihood estimates. Furthermore, so-called Bayes factors are 

used to determine weights corresponding to how well a probability distribution fits the observed 

data; that is, the better the fit, the higher the weighting. 

Key words: Bayesian analysis, non-informative Jeffreys prior, Bayes weights, river discharges, 

maximum likelihood. 

1 Introduction 

Probabilistic design of river dikes is usually based on estimates of the design discharge. In The 

Netherlands, the design discharge is defined as the discharge with an average return period of 

1,250 years. Extreme quantiles, such as the design discharge are usually determined by fitting 

various probability distributions to the available observations. [See for example DH & EAC-

RAND (1993), Castillo (1988), and Van Gelder (1999)]. Probability plots and goodness-of-fit tests 

(such as chi-square and Kolmogorov-Smirnov) are commonly used to select an appropriate 

distribution. 
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A major practical difficulty in fitting probability distributions is that there is often a limited 

amount of data for determining extreme quantiles. The associated return period is large 

compared with the length of the observation period. For the rivers Rhine and Meuse, observed 

flood discharges are available for a period of 98 and 88 years only, respectively. There is a large 

statistical uncertainty involved in estimating extreme quantiles when using these observations. 

The maximum-likelihood method has been recognised as one of the best parameter estimation 

methods (Galambos et al., 1994) and it is especially suitable when there is a large number of 

observations. A drawback of the maximum-likelihood method is that statistical uncertainties 

cannot be taken into account. 

Another consequence of sparse data is that more than one probability distribution seems to fit 

the observations and only a few can be rejected. Different distributions usually lead to different 

extrapolated values and the goodness-of-fit tests for selecting the appropriate distribution are 

often inconclusive. The tests are more concentrated on the central part of the distribution than 

the tail. As an alternative, the Bayesian method can be used to determine weights for 

quantifying how well a probability distribution fits the observed data while taking account of 

the statistical uncertainties involved (Van Gelder, 1999; Van Gelder et al., 1999). 

In this paper, a Bayesian method for estimating design loads is presented. Using Bayes’ 

theorem, the prior distribution representing information about the uncertainty of the statistical 

parameters is updated to the posterior distribution as soon as data becomes available. Section 2 

considers Bayesian estimation of quantiles associated with large average return periods. The 

Bayes estimates are compared to the classical maximum-likelihood estimates. In order that the 

observations ‘speak for themselves’, the non-informative Jeffreys priors are chosen as priors. 

Bayes factors are used to determine weights corresponding to how well a probability 

distribution fits the observed data. Section 3 and 4 are devoted to determining non-informative 

Jeffreys priors and Bayes weights, respectively. Section 5 presents a well-known Laplace 

expansion for the purpose of approximating the Bayes weights. The annual maximum 

discharges of the rivers Rhine and Meuse will be studied in Section 6. Section 7 ends with 

conclusions. 

2 Bayesian estimation 

According to (amongst others) Slijkhuis et al. (1999) and Siu & Kelly (1998), uncertainties in risk 

analysis can primarily be divided into two categories: inherent uncertainties and epistemic 

uncertainties. Inherent uncertainties represent randomness or variability in nature. For 

example, even in the event of sufficient data, one cannot predict the maximum discharge that 

will occur next year. In this paper, we study inherent uncertainty in time (e.g., fluctuation of the 

discharge in time). Epistemic uncertainties represent the lack of knowledge about a physical 



 191 

system. In this paper, we study statistical uncertainty (due to lack of sufficient data); it includes 

parameter uncertainty (when the parameters of the distribution are unknown) and distribution-

type uncertainty (when the type of distribution is unknown). Statistical uncertainty can be 

reduced as more data becomes available. 

A statistical theory which combines modelling inherent uncertainty and statistical uncertainty is 

Bayesian statistics. The theorem of Bayes (1763) provides a solution to the problem of how to 

learn from data. In the framework of estimating the parameters ( )',..., dθθ1θ =  of a probability 

distribution ( )θxl , Bayes’ theorem can be written as  

( ) ( ) ( )
( ) ( )
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( )θxl  = the likelihood function of the observations ( )'xx n,...,1=x  when the parametric 

vector ( )',..., dθθ1θ =  is given, 

( )θπ  = the prior density of ( )',..., dθθ1θ =  before observing data ( )'xx n,...,1=x , 

( )xθπ  = the posterior density of ( )',..., dθθ1θ =  after observing data ( )'xx n,...,1=x , and 

( )xπ  = the marginal density of the observations ( )'xx n,...,1=x . 

 

The likelihood function ( )θxl  represents the inherent uncertainty of a random variable X 

when θ is given, whereas the prior density π(θ) and the posterior density π(θ|x) represent the 

statistical uncertainty in θ. This statistical uncertainty in θ is parameter uncertainty. Using 

Bayes’ theorem, we can update the prior distribution to the posterior distribution as soon as 

new observations become available. The more observations that are available, the smaller the 

parameter uncertainty. If a random variable X has a probability density function ( )θxl  

depending on the parametric vector θ, then the likelihood function ( )θnx,...,x1l  of the 

independent observations ( )'xx n,...,1=x  is given by 
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n

i
n xx,...,x lll
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1

=
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The marginal density π(x) is obtained by integrating the likelihood ( )θxl  over θ. Note that the 

maximum-likelihood estimate of the parametric vector θ is defined as the estimate θ̂ , which 

maximises the likelihood function ( )θxl  as a function of θ. 
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The cumulative distribution function and the survival function of the random variable X are 

denoted by ( )θxF  and ( )θxF , respectively. The posterior predictive probability of exceeding 

0x  is 

{ } { } ( ) ( ) ( ) θxθθθxθθx
θθ

dxFdxx ππXX ∫∫ =>=> 000 PrPr . (3) 

Besides representing parameter uncertainty on the basis of Bayesian statistics, distribution-type 

uncertainty can also be taken into account using so-called Bayes factors or Bayes weights (see 

Section 4). 

3 Non-informative priors 

For the purpose of flood prevention, we would like the observations to ‘speak for themselves’, 

especially in comparison to the prior information. This means that the prior distribution should 

describe a certain ‘lack of knowledge’ or, in other words, should be as ‘vague’ as possible. For 

this purpose, so-called non-informative priors have been developed. A disadvantage of most 

non-informative priors is that these priors can be improper; that is, they often do not integrate 

to one. This disadvantage can be resolved by focussing on the posterior distributions rather 

than the prior distributions. As a matter of fact, formally carrying out the calculations of Bayes’ 

theorem by combining an improper prior with observations often results in a proper posterior. 

The pioneer in using non-informative priors was Bayes (1763) who considered a uniform prior. 

However, the use of uniform priors is criticised because of a lack of invariance under one-to-one 

transformations. As an example, let us consider an unknown parameter θ and suppose the 

problem has been parameterised in terms of { }θφ exp= . This is a one-to-one transformation, 

which should have no bearing on the ultimate result. The Jacobian of this transformation is 

given by φφφφθ //ddd/d 1log == . Hence, if the non-informative prior for θ is chosen to be 

uniform (constant), then the non-informative prior for φ  should be proportional to φ/1  to 

maintain consistency. Unfortunately, we cannot maintain consistency and choose both the non-

informative priors for θ and φ  to be constant. 

The physicist Sir Jeffreys (1961, Chapters 3-4) was the first to produce an alternative to solely 

using uniform non-informative priors. His main motivation for deriving non-informative priors 

(currently known as Jeffreys priors) were invariance requirements for one-to-one 

transformations. In a multi-parameter setting, the Jeffreys prior takes account of dependence 

between the parameters. For decades, there has been a discussion going on whether the 

multivariate Jeffreys rule is appropriate. We believe that the following statement made by 

Dawid (1999) is right: “we do not consider it as generally appropriate to use other improper 

priors than the Jeffreys measure for purposes of ‘fully objective’ formal model comparison”. 
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The main advantage of the Jeffreys prior is that it is always both invariant under 

transformations and dimensionless. 

As an example, the multivariate Jeffreys prior for the normal model with unknown mean µ and 

unknown standard deviation σ is 

( ) σµ
σ

σµσµ dddd,J 2
2= . 

It can be easily seen that the above prior is dimensionless: i.e., dµ, dσ, and σ have the same 

dimension. For other examples, see the Appendix. Because the non-dimensionality argument is 

rather sound (from a physics point of view), we propose to use the multivariate Jeffreys 

measure for the purpose of model comparison. 

Unfortunately, Jeffreys priors don’t always exist for all parameter values. Jeffreys (1961, pages 

182-183) pointed out that his multi-parameter rule must be applied with caution, especially 

where scale and location parameters occur simultaneously. To counter this problem Jeffreys 

suggested: “We can then deal with location parameters, on the hypothesis that the scale and 

numerical parameters are irrelevant to them, by simply taking their prior probability uniform”. 

In deriving Jeffreys priors, we have the experience that problems mainly occur in situations 

where a location parameter is bounded from below or above (e.g., is greater than zero or is less 

than the smallest possible observation). For probability distributions with a location parameter 

being bounded from above (such as the exponential, Rayleigh, gamma, Weibull and generalised 

gamma), we therefore follow Jeffreys’ recommendation and assume the location parameter to 

be a priori independent of scale and shape parameters and take the uniform prior as a non-

informative prior for the location parameter and the Jeffreys prior as a non-informative prior for 

the combination of scale and shape parameters. 

In explaining the derivation of non-informative Jeffreys priors, we refer to Box & Tiao (1973, 

Section 1.3). Let ( )'xx n,...,1=x  be a random sample from a multi-parameter probability 

distribution with likelihood function ( )θxl . When the probability distribution obeys certain 

regularity conditions, then for sufficiently large n, the posterior density function of the 

parametric vector θ is approximately normal, and remains approximately normal under mild 

one-to-one transformations of ( )'xx n,...,1=x . As a consequence, the prior distribution for θ is 

approximately non-informative if it is taken proportional to the square root of Fisher’s 

information for a single observation. The elements of Fisher’s information matrix are 

( ) ( )
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and the corresponding non-informative Jeffreys prior is defined by 

( ) ( ) ( ) d,...,ji,,IIJ ij 1det === θθθ . 
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4 Bayes factors and Bayes weights 

The Bayesian approach to hypothesis testing originates from the work of Jeffreys (1961). He 

developed a methodology for quantifying the evidence in favour of a scientific theory using the 

so-called Bayes factor. This factor is the posterior odds of the null hypothesis when the prior 

probability on the null is one-half. A recent overview on Bayes factors can be found in Kass & 

Raftery (1995). 

Assume the data ( )'xx n,...,1=x  to have arisen under one of m models Hk , k = 1,…,m. These 

hypotheses represent m marginal probability densities ( )kHxπ , k = 1,…,m. Given the prior 

probabilities ( )kHp , k = 1,…,m, the data produce the posterior probabilities ( )xkHp , k = 

1,…,m, where 

( )∑ = =m
1j jHp 1  and ( )∑ = =m

1j jHp 1x . 

These posterior probabilities can be obtained using Bayes’ theorem as follows: 

( ) ( ) ( )
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= m
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π
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= ,     j, k = 1,…,m, (5) 

is denoted by the Bayes factor. The posterior probability ( )xkHp  is also called the Bayes 

weight attached to model k. The marginal densities of the data under Hk, ( )kHxπ , can be 

obtained by integrating with respect to the probability distribution of the uncertain parametric 

vector ( )'dkkk θθ ,...,1=θ  with number of parameters d: 

( ) ( ) ( ) kkkkkk dHH,H θθθxx ∫= ππ l , (6) 

where π(θk|Hk) is the prior density of θk under model Hk and ( )kk H,θxl  is the likelihood 

function of the data x given θk and Hk. 

A difficulty in using non-informative improper priors for calculating Bayes factors is that the 

prior odds, and thus the Bayes factor, may be undefined. The reason for this is that strictly 

speaking, the prior probability p(Hk) is defined as 

( ) ( ) ( )∫= kkkkk dHJHwHp θθ , 

where the integral over the non-informative Jeffreys prior J(θk|Hk) is often infinite and w(Hk) is 

the prior weight. However, according to Dawid (1999), this problem can be resolved by 

redefining the posterior odds as 
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This posterior odds is well-defined so long as both integrals in it converge, which will typically 

be the case so long as the sample size n is large enough. Using Eqs. (4) and (7), the posterior 

probability of model Hk being correct can now be rewritten as 

( ) ( ) ( )
( ) ( )∑ =
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j jj
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HwH

HwH
Hp

1 x

x
x

π
π

,     k = 1,…,m. (8) 

It remains to choose the prior weights w(Hk). For formal model comparison, we propose to use 

equal prior weights: i.e., w(Hk) = 1/m,  k = 1,…,m. 

The posterior predictive probabilities of exceeding x0 are calculated using the non-informative 

Jeffreys prior. Using the Bayes weights p(Hk|x), k = 1,…,m, the weighted predictive probability 

of exceeding x0 is then defined by 

{ } ( ) { }xxx ,HxXHpxX k

m

k
k 0

1
0 PrPr >=> ∑

=
, (9) 

where { }x,HxX k0Pr >  is the predictive probability of exceeding x0 under likelihood model Hk, 

k = 1,…,m. The predictive exceedance probabilities have been obtained by numerical 

integration. 

5 Approximate Bayes weights 

If the prior distribution is the non-informative, improper, Jeffreys prior then the marginal 

density of the data ( )'xx n,...,1=x  given in Eq. (6) may be difficult to compute. A possible 

solution is to approximate the logarithm of the marginal density using the Laplace expansion 

(De Bruijn, 1981, Chapter 4). The logarithm of the marginal density of the data can then be 

approximated by 

( )( ) ( ) ( ) ( )( )H,ˆn
dd

H θx2x lloglog
2

log
2

log +−≈ ππ  (10) 

for ∞→n , where θ̂  is the maximum-likelihood estimator for the probability model H, d is the 

number of parameters of the probability model H, and n is the number of observations [see 

Tierney & Kadane (1986), Draper (1995), and Dawid (1999)]. Accordingly, the marginal density 

can be approximated by 

( ) ( )H,ˆn
H

d

θxx l
2

2
⎟
⎠
⎞

⎜
⎝
⎛=

π
π  (11) 

for ∞→n . The second and third terms on the right-hand side of Eq. (10) form the Bayesian 

information criterion for model selection (Schwarz, 1978). The first term on the right-hand side, 
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(d/2)log(2π), has been mostly omitted. However, we confirm the statement of Draper (1995) that 

its inclusion improves the accuracy of approximations to the marginal density. 

An advantage of the above Laplace expansion is the possibility to use output of classical 

statistics software (maximum-likelihood estimators). Another advantage of the Laplace 

approximation is the independence of the prior distribution (which, of course, can also be seen 

as a disadvantage). This approximation appears to work well in practice (see Van Noortwijk et 

al., 2001). In this paper, the Laplace expansion has been used to approximate the Bayes weights. 

6 Discharges of the rivers Rhine and Meuse 

In this section, the discharges of the rivers Rhine and Meuse with an average return period of 

1,250 years are determined. Remark that the estimated discharges in this paper are results of the 

proposed Bayesian method, and are therefore not statutory. The statutory Design Discharge of 

the Rhine at Lobith is currently set at 16,000 m3/s and of the Meuse at Borgharen at 3,800 m3/s 

(Van De Langemheen & Berger, 2002). 

6.1 River Rhine at Lobith 

In Van Noortwijk et al. (2001), a Bayesian analysis using numerical integration has been applied 

to the annual maximum discharges of the river Rhine at Lobith during the period 1901-1998. 

The Bayes weights in Eq. (8) were determined for seven probability distributions: the 

exponential, Rayleigh, normal, lognormal, gamma, Weibull and Gumbel. On the basis of a 

statistical analysis, the location parameter was chosen to be 2,125 m3/s. This location parameter 

followed by maximising the weighted marginal density of the observations, where Bayes 

weights were attached to the seven individual marginal densities. 

This paper extends the Bayesian analysis of Van Noortwijk et al. (2001) in the sense that the 

generalised gamma and generalised extreme-value distribution have been added and that the 

statistical uncertainty in the location parameter has been taken into account in a Bayesian 

manner. In order to improve the Bayes estimates of the exceedance frequencies and to link up 

with the maximum-likelihood method, the location parameters are assumed to be unbounded 

from below. As a matter of fact, both the maximum-likelihood and Bayes estimates of the 

location parameters can be negative. Given equal prior weights, the Bayes posterior weights of 

the nine probability distributions can be found in Table 1. They have been computed on the 

basis of the Laplace approximation. Recall that the Laplace approximation can be applied when 

the number of observations is large. 
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Table 4: Prior and posterior Bayes weights as well as the maximum-likelihood and Bayes estimates of 

the 1/1,250 quantile for the annual maximum river Rhine discharge [m3/s] 

Bayes weight 1/1,250 quantile estimate Probability distribution 

Prior Posterior maximum- 

likelihood 

Bayes 

Exponential 0.1111 0.0000 >22,000 >22,000 

Rayleigh 0.1111 0.2177 15,450 15,868 

Normal 0.1111 0.0720 13,363 13,593 

Lognormal 0.1111 0.1270 15,243 15,290 

Gamma 0.1111 0.1361 15,113 15,153 

Weibull 0.1111 0.1769 14,163 14,436 

Gumbel 0.1111 0.0858 18,999 19,340 

Generalised gamma 0.1111 0.0454 14,287 14,808 

Generalised extreme-value 0.1111 0.1391 14,330 15,785 

Bayes combination 1.0000 1.0000 15,508 15,941 

 

 

 

Figure 5:  Predictive exceedance probability of annual maximum river Rhine discharge. 
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Using the Laplace expansion for the Bayes weights, the Rayleigh distribution appears to fit best 

with a Bayes weight of 22%. The second, third, fourth, and fifth best Bayes fits are the Weibull, 

generalised extreme-value, gamma, and lognormal distribution. 

The Rayleigh distribution is a special case of the Weibull distribution, which also belongs to the 

family of generalised gamma distributions. Because the Rayleigh distribution fits best with the 

data, the question now arises how to deal with a probability distribution which is a special case 

of another probability distribution. The Bayes weights show a tendency to be dependent on the 

number of parameters of the probability distributions that are considered. That is, if a two-

parameter probability distribution (such as the Rayleigh) appears to fit the observations well, 

then it gets a higher weight than the three-parameter probability distribution (such as the 

Weibull) of which it is a member. Mathematically this can be illustrated by considering the 

Laplace expansions of the logarithm of the marginal densities ( )11 H,θ̂xl  and ( )22 H,θ̂xl , 

where d1 is the dimension of θ1 and d2 the dimension of θ2. Let model H1 be a member of model 

H2, where dimension d1 is less than d2. When the data x originates from model H1, the likelihood 

functions of both models are identical. Hence, the Laplace expansion of the Bayes factor of the 

two models (5) can be rewritten as 
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As ∞→n , this Bayes factor signifies that the lower-dimensional model H1 is relatively more 

probable than the higher-dimensional model H2. 

Although the generalised extreme-value distribution is especially useful for fitting annual 

maxima of loads, it receives less weight than would have been expected from the theoretical 

point of view. This is probably because the conditions for which the generalised extreme-value 

distribution can be applied don’t hold in this situation. In mathematical terms, the generalised 

extreme-value distribution is obtained as a limiting distribution of the maximum values in a 

random sample of increasing size. In order to apply the generalised extreme-value distribution, 

the annual maxima must approximately be composed of an ‘infinite’ number of loads which can 

be treated as statistically independent. However, the smaller the units of time for which river 

discharges are considered, the more dependent they are.  

The generalised gamma distribution – with the Rayleigh, Weibull, gamma and lognormal 

distribution as special cases – gets a very low Bayes weight. Despite the flexibility of the four-

parameter generalised gamma distribution, it apparently doesn’t fit well with the data and 

results in a 1/1,250 quantile being too low (14,808 m3/s). The four-parameter generalised 

gamma distribution was also studied by Van Noortwijk (2001), who assumed the location 

parameter to be greater than zero. Other probability distributions with zero or very low Bayes 

weights are the exponential, normal and Gumbel. 
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The Bayes estimate of the river Rhine discharge at Lobith with an average return period of 

1,250 years is 15,941 m3/s. Figure 1 shows both the empirical exceedance probability and the 

predictive exceedance probabilities computed using numerical integration. Using the 

maximum-likelihood method combined with the Bayes weights, the estimate of the discharge 

with an average return period of 1,250 years decreases to 15,508 m3/s. As expected, taking 

account of parameter uncertainty results in larger design discharges. 

6.2 River Meuse at Borgharen 

A similar statistical analysis has been applied to the annual maximum discharges of the river 

Meuse at Borgharen during the period 1911-1998. Using the Laplace expansion for the Bayes 

weights, the Rayleigh distribution fits best with a Bayes weight of 34%. The Gumbel 

distribution has a Bayes weight of 13%, the lognormal, gamma and Weibull each a weight of 

12%, and the generalised extreme-value a weight of 11%. The remaining probability 

distributions – the exponential, normal and generalised gamma – have zero or very low Bayes 

weights. 

The Bayes estimate of the river Meuse discharge at Borgharen with an average return period of 

1,250 years is 3,846 m3/s. Figure 2 shows both the empirical exceedance probability and the 

predictive exceedance probabilities computed using numerical integration. Using the 

maximum-likelihood method combined with the Bayes weights, the estimate of the discharge 

with an average return period of 1,250 years decreases to 3,724 m3/s. 

 

Table 5: Prior and posterior Bayes weights as well as the maximum-likelihood and Bayes estimates of 

the 1/1,250 quantile for the annual maximum river Meuse discharge [m3/s] 

Bayes weight 1/1,250 quantile estimate Probability distribution 

Prior Posterior maximum- 

likelihood 

Bayes 

Exponential 0.1111 0.0000  >5,000  >5,000 

Rayleigh 0.1111 0.3420 3,546 3,653 

Normal 0.1111 0.0281 3,115 3,176 

Lognormal 0.1111 0.1205 3,635 3,680 

Gamma 0.1111 0.1196 3,577 3,611 

Weibull 0.1111 0.1179 3,393 3,512 

Gumbel 0.1111 0.1306 4,428 4,518 

Generalised gamma 0.1111 0.0328 3,452 3,577 

Generalised extreme-value 0.1111 0.1085 3,529 3,944 

Bayes combination 1.0000 1.0000 3,724 3,846 
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Figure 6:  Predictive exceedance probability of annual maximum river Meuse discharge. 

7 Conclusions 

In this paper, the river discharges of the Rhine at Lobith and the Meuse at Borgharen with an 

average return period of 1,250 years have been determined taking account of the statistical 

uncertainties in location, scale and shape parameters. Statistical uncertainty occurs due to a lack 

of data. It can be subdivided into parameter uncertainty (when the parameters of a distribution 

are unknown) and distribution-type uncertainty (when the type of distribution is unknown). 

Bayes estimates and Bayes weights can be used to account for parameter uncertainty and 

distribution-type uncertainty respectively. Using Bayes weights, it is possible to discriminate 

between different probability models and to quantify how well a distribution fits the data. For 

formal model comparison, the use of the non-informative Jeffreys prior is recommended. The 

Bayes weights have been approximated by the Laplace expansion and the predictive 

exceedance probabilities have been computed using numerical integration. The design 

discharge increases when taking the statistical uncertainties properly into account. For both 

rivers, the Rayleigh distribution appears to fit best with the annual maximum discharges. 

Because the Rayleigh distribution fits well, the method of Bayes weights attaches a higher 

weight to this lower-dimensional probability distribution than to the higher-dimensional 

distributions of which it is a member (such as the Weibull and the generalised gamma). 
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Appendix: Probability distributions and their Jeffreys priors 

This Appendix contains the probability distributions which are considered in the statistical 

analysis of the annual maximum discharges, as well as their non-informative Jeffreys priors. 

Special care has been given to deriving possible constants in the Jeffreys prior. The reason for 

this is that we agree with Dawid (1999), who stated that, “for the purposes of ‘objective’ model 

comparison, there is nothing to be gained by rescaling (...), and that the actual Jeffreys measure 

should be used”. 

For probability distributions with a location parameter being bounded from above by the 

smallest possible observation, we follow the recommendation of Jeffreys (1961, pages 182-183) 

and assume the location parameter to be a priori independent of scale and shape parameters. 

The approximate Jeffreys prior then follows by taking the uniform prior as a non-informative 

prior for the location parameter and the Jeffreys prior as a non-informative prior for the 

combination of scale and shape parameters. 

Exponential distribution 

A random variable X has an exponential distribution with scale parameter θ > 0 and location 

parameter a if the probability density function of X is given by 

( ) ( )( )xI
θ

ax
aθ,x a,∞

⎭
⎬
⎫

⎩
⎨
⎧ −−= exp

1
Ex

θ
, 
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where IA(x) = 1 if Ax ∈  and IA(x) = 0 if Ax ∉  for every set A. The approximate Jeffreys prior for 

the exponential distribution is 

( ) ( )
θ

θθ 1=≈ Ja,J . 

Rayleigh distribution 

A random variable X has a Rayleigh distribution with quasi-scale parameter θ > 0 and location 

parameter a if the probability density function of X is given by 

( ) ( ) ( )
( )( )xI

ax-ax
a,x a,∞
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2

exp
2

Ra . 

The approximate Jeffreys prior for the Rayleigh distribution is 

( ) ( )
θ

θθ 1=≈ Ja,J . 

Normal distribution 

A random variable X has a normal distribution with mean m and precision r > 0 if the 

probability density function of X is given by 

( ) ( )
⎭
⎬
⎫
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⎧ −−⎟

⎠
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⎝
⎛= 22
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2
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N mx

rr
rm,x

π
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The Jeffreys prior for the normal distribution is 

( )
r

rm,J
2

1= . 

Lognormal distribution 

A random variable X has a lognormal distribution with shape parameters m and r > 0, and 

location parameter a if the probability density function of X is given by 

( ) ( )( ) ( )( )xImax
r
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⎛= 22
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log
2

exp
1

2
LN

π
. 

Hence, if log(X – a) has a normal distribution, then X - a has a lognormal distribution. The 

approximate Jeffreys prior for the lognormal distribution is 

( ) ( )
r

rm,Jar,m,J
2

1=≈ . 

Gamma distribution 

A random variable X has a gamma distribution with shape parameter a > 0, scale parameter  

b > 0, and location parameter c if the probability density function of X is given by 
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( ) ( ) ( ) ( ){ } ( )( )xIcxbcx
a

b
cb,a,x c,

a
a

∞−−−
Γ

= expGa 1- , 

where 

( ) ∫
∞
=

−−=Γ
0

1
t

ta dteta   

is the gamma function for a > 0. The approximate Jeffreys prior for the gamma distribution is 

( ) ( ) ( )
b

a'a
ba,Jcb,a,J

1−
=≈

ψ
. 

The function ( )a'ψ  is the first derivative of the digamma function: 

( ) ( ) ( )
2

2log

a

a
a
a

a'
∂

Γ∂
=

∂
∂= ψψ  

for a > 0. It is called the trigamma function. The digamma function and the trigamma function 

can be accurately computed using algorithms developed by Bernardo (1976) and Schneider 

(1978), respectively. 

Weibull distribution 

A random variable X has a Weibull distribution with shape parameter a > 0, scale parameter  

b > 0, and location parameter c if the probability density function of X is given by 

( ) ( )( )xI
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The approximate Jeffreys prior for the Weibull distribution is 

( ) ( )
6

1 π
b

ba,Jcb,a,J =≈ . 

Gumbel distribution 

A random variable X has a Gumbel distribution with location parameter a and scale parameter 

b > 0 if the probability density function of X is given by 
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The Jeffreys prior for the Gumbel distribution is 

( )
6

1
2

π
b

ba,J = . 

Generalised gamma distribution 

A random variable X has a generalised gamma distribution with scale parameter b > 0, shape 

parameters a > 0 and c > 0, and location parameter d if the probability density function of X is 

given by 
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The approximate Jeffreys prior for the generalised gamma distribution is 

( ) ( ) ( )[ ] ( )
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Generalised extreme-value distribution 

A random variable X has a generalised extreme-value distribution with location parameter a, 

scale parameter b > 0 and shape parameter c if the probability density function of X is given by 
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where [ ] { }y,y 0max=+ . The variable x is bounded by a + b/c from below for c < 0 and from 

above for c > 0; that is, ∞<<+ xb/ca  for c < 0 and b/cax +<<−∞  for c > 0. The case c = 0, 

which is the Gumbel distribution, is the limiting distribution as 0→c  where ∞<<−∞ x . For  

c < 1/2, the Jeffreys prior of the generalised extreme-value distribution is 

( )
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2

2
2 11
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with Euler’s constant 0.5772=γ . 
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