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Vibrations in building structures are almost always undesirable. Whether in the form of low frequency
oscillations, or droning of the structure, or as audible noise, they may effect the comfort of the user.
They may even effect the safety and the integrity of (parts of) the structure. Damping of mechanical
vibrations has always been a point of consideration for the engineer. Presently, it is of increasing inter-
est and importance for the building industry. There are several reasons for this: (1) increasing use of
high quality materials which exhibit very low material damping; (2) tendency towards "slender"
designing requiring a lower volume of (high quality) materials, thus offering less capacity for absorp-
tion of vibration energy; (3) excessive noise and vibration hindrance and interference in highly popu-
lated area's (particularly city centers), due to high concentration of structures including high rise
buildings, surface- or underground infrastructure, combined with replacement of natural soil between
them by low damping solid material; (4) necessity to meet higher performance standards and environ-
mental requirements as to vibration hindrance and noise; (5) necessity to apply high vibration-absorb-
ing materials and systems. Study and careful description of various sources and forms of damping,
including the internal damping of materials, is a requirement for meeting these developments.

This paper discusses the merits of a three parameter rheological model for modeling time dependent
behaviour of materials in general and dynamic behaviour in particular, with emphasis on damping of
free vibrations. This model is known in litterature as the standard linear solid (SLS).

Damping of vibrations in materials is normally anticipated on the basis of the damping modes of the
standard mechanical model for damping: viscous damping element parallel with a elastic element
(spring). It is shown that these modes are not the general free damping modes for linear materials.
When the three-parameter (SLS) model is adopted, the general damping modes do appear. The agree-
ment between model and actual time-dependent material behaviour is acceptable for a wide range of
materials with low as well as high damping under both free and forced vibration, over a wide
frequency (or time) domain. Parameters can be adapted according to specific materials, including
composite materials.

The standard (spring-damper) model retains its applicability for low-damping materials.

Key words: Internal damping, solid damping, free damped vibrations, dynamic modulus, loss factor,

relaxation, standard linear solids, composite materials
HERON, Vol. 46, No. 1 (2001) ISSN 0046-7316

49



50

Introduction

Time-dependent and dynamic behaviour of building materials is a subject of on-going interest to
the building engineer and so are practical models, parameters, etc. to interpret, characterize, predict
and inter-relate the various time dependent phenomena such as creep, stress relaxation and damp-
ing.

Mechanical damping of materials is almost invariably discussed in analogy with the damping of a
simple spring-mass system with a damping element (dashpot) parallel to the spring. It follows that
the well-known hierarchy of free damping modes: periodic damping, critical damping and
exponential (non-periodic) damping of this system, is likewise anticipated for free damped vibra-
tions in materials (see for instance ref. 2).

i .
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Figure 1.1 Kelvin-model (left) and Maxwell-model, both with a mass attached

This situation is surprising because it has been well-known (ref.1, p.13) for a long time that the two-
element spring-dashpot system (elements parallel — the mechanical equivalent of the rheological
model according to KELVIN (or VOIGT)) - does not offer a realistic presentation of time-dependent
mechanical properties of materials, such as for instance creep and stress relaxation. Only certain
thermoplastics with a low degree of cross-linking deform reasonably according to this Kelvin
model. Under harmonic loading the KELVIN model predicts a dynamic modulus and a phase shift
which will be highly dependent on frequency (§4), whereas the modulus and loss angle of most
actual materials show little variation with — or a very smooth dependency of the frequency (ref.1,
ref. 2, p. 24, ref. 3, p. 25).

In this paper we will present the damped vibration behaviour of materials following a three-
element schematization: the standard linear solid (SLS)- or ZENER-model (Figure 1.2), sometimes
termed the “triparameter anelastic model” or “standard anelastic model” (ref.1, p. 13 and 76).

This rheological model is known (ref.1, p.13) to offer a realistic representation of actual materials
behaviour over the whole frequency range from creep and stress relaxation to dynamic modulus,
dynamic loss factor, rate effects and impact loading.

Figure 1.2 Zener-rheological model, or Standard Linear Solid (SLS) model



The value of the (three) parameters of this model can be so adapted as to obtain best “fit” with
actual linear non-elastic materials.

Modelling constitutive and dynamic behaviour. Survey

Modelling dynamic behaviour of a material or structure requires linking accellerations caused by
the action of internal and external forces on its mass, with the time-dependent strains etc. given by a
sufficiently precise description of its constitutive behaviour.

A rigorous description (ref. 4) — although not very practical of the time dependent stress-strain rela-
tion of linear materials is contained in the homogeneous differental equation (DE):
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in which o and ¢ are the stress and the strain tensor respectively.

It can be shown that for simple loading situations: uniaxial, shear, the stress-strain relationship of a
so-called Maxwell chain (Figure 2.1 (ref. 4 and 5)) is equivalent with the DE given above. In fact,
well-known rheological models such as Hooke, Newton, Maxwell, Kelvin, SLS, Burgers, are simple
special cases of both the DE and the Maxwell chain. The branches of the chain are usually arranged
according to decreasing relaxation time. Infinite relaxation time (c, = o) of the zero-branch
ensures that the material is essentially a solid.

Figure 2.1 Maxuwell chain

At the highest strain rates or frequencies all the dampers will exhibit infinite stiffness and the total

n

stiffness of the system is simply Ek,- , the so-called unrelaxed stiffness. At lower rates the dashpots
i=0

in the branches with lowest relaxation times will relax during loading, and so will the forces in these

branches, reaching zero if time permits. At strain rate zero the only stiffness remaining is k, , the

relaxed stiffness. It follows that under harmonic loading there will be phase shift between stress and

strain which will vanish at both very low and very high frequencies.

Time dependent behaviour of linear visco-elastic material can be approached in principle up to any

desired precision by adding sufficient branches, i.e. by incorporating a sufficient number of terms
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(Figure 2.1). All this under the assumption that a sufficient number of coefficients (= the values of

the branch elements of a sufficient number of branches) are known.

Proposing a scheme like the Maxwell chain is not merely a matter of introducing more constants to
obtain better curve fitting. The branches may well correspond with actual relaxation processes in
solids. Lazan (ref. 1, p. 39) and Zener (ref. 6) have distinguished a whole range of relaxation mecha-
nisms in metals. It is not the subject of the present publication but we will nevertheless mention a

number of such mechanisms:

A. (on the micro-level): interchange of pairs of solute atoms; relaxation time 10** s, independent of
specimen size but strongly dependent of temperature;

B. (on the meso-level): grain boundary displacements; relaxation time 10** s, independent of the speci-
men size;

C. (on the macro-level): transverse thermal currents in a specimen subjected to bending, due to the
rise and fall of temperature on the tensile and compressive side of the specimen respectively
(adiabatic loading) which occurs when the oscillation frequency is sufficiently high; relaxation
time of the order of 10s, but highly dependent on the dimensions of the specimen or structural
member;

D. (on the macro-level): time dependent displacements in composites in which elastic constituents
(fibres, particles) are embedded in a viscous or visco-elastic matrix;

Appendix IV-2 offers an example with a relaxation time of the order of 3 s at room temperature.

In amorphous solids there is a continuous spectrum of relaxation times (ref. 4).

There are some organic materials for which values of the elements of four or five branches of the
Maxwell chain representation of a material have been published, but this is not the case for materi-
als in general. Moreover it would seem that the process of solving the DE(2.1) is far too tedious to be
adopted in general engineering practice as a tool for determining time dependent stresses, strains,
and displacements of the structure under consideration.

The Maxwell chain idea is nevertheless very useful for understanding time dependent behaviour
under different loading conditions. It is clear for instance that mechanism B could show up in long
term creep testing, but never in an oscillation experiment; for mechanism C the situation is exactly
the other way around. A could show up in short term creep testing but it would require a testing

frequency of 102 c¢/s to show the effect on the damping of oscillations.

For general engineering practice a constitutive and dynamic description should be favoured which
is simple but nevertheless sufficiently sophisticated to bring about the essential features of time

dependent behaviour.

Survey of the article

Responses of the standard spring (k)-dashpot (c) system and the SLS system, both with a mass ()
attached, under forced vibrations have been treated extensively in literature (ref. 1) and can also be
found in textbooks (with ref. 7 as a very good example); they are summarized for convenience in §4.



§5 addresses the free damped vibrations of both systems. Results for the SLS system are treated in
more detail and presented in a manner that has not been published before.

Equations and solutions for both systems are given in §3.

In the discussion (§6) we will compare the outcome for both systems and conclude that the
SLS-description would seem to be an attractive compromise between too complex descriptions and
models that are too simple to cover damping phenomena in general.

Appendices I and II include a full treatment of the mathematics involved, Appendix III interrelates
various time dependent phenomena of SLS-type materials and Appendix IV illustrates the SLS-
description for a number of construction materials.

Differential equation and parameters

ext

Figure 3.1. Standard Linear Solid (SLS) mechanical model and Kelvin model with a mass attached (kem-model)

Dynamic behaviour of a construction is obtained by combining:

- the constitutive laws of the constituting materials

- the dynamic response to internal and external forces governed by Newton's law

into wave equations which must next be solved for the specific geometry of the structure, its mass
distribution and the boundary conditions. When comparing and proposing model descriptions we
will limit ourselves to one-dimensional cases with one concentrated mass. In that case the solutions
will be vibrations, not waves. Equations will be given in this paragraph. Once a model has proved
useful, the extension to structures with distributed mass, although mathematically complex, will be
straightforward in principle.

Fig 3.1 shows both models under consideration. For brevity we will term the first model slsm and
the second kcm in this paragraph.
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It is worthwhile pointing out that, although the interpretation of simple systems of masses, springs
and dashpots is normally one-dimensional (all forces and displacements along the same axis), the
correspondence with actual vibrating materials is by no means restricted to uniaxial stresses and
strains. So, k, k, and ¢ may correspond with E, E, and 1", but likewise with G, G, and the shear vis-

cosity, or with appropriate bending stiffnesses.

In this paragraph we will first study the differential equation of the mechanical system correspond-
ing with a SLS, with a mass attached (slsm). The ‘mechanical’ parameters of this system: k, k. and ¢
correspond with the moduli E, E, and the (extensional) viscosity of the material. The correspond-
ence between the mechanical model and a vibrating (SLS-type) material is given and illustrated in
Appendices [l and IV.

If we combine the constitutive equation (in mechanical formulation) of a SLS-material:

F;m.p..{l‘...t”?ﬂ:k u+c .1_+.1_ iti (31)
k, dr k Kk |dt

c

with the dynamic equation:

a¥_p _f (3.2)

(Figure 3.1) the following third order differential equation of the SLS-type rheological system (slsm)
can be obtained:

3 2
medu du [k -‘i'i+ku=Fw L (3.3)
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c

In the absence of F,,(free vibrations) we have

——3-+m——-2—+c
k, dt dt k

c
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with four absolute parameters: m, ¢, k and k..

If we define the damping parameters for the SLS-system according to:

K(Kelvin) =22 35)
c

! Throughout this article the extensional viscosity will be denoted by 7.
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k.m
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M (Maxwell) =

(3.6)

and introduce a dimensionless time variable according to
T=Dt p]=[r"]) with D=<=¢
(Ip1=[]) p

the differential equation (3.3) can now be rewritten:

d’u  d*u du
—t——+(1+ KM )—+ Ku=0 3.7
d7e®  dr? ( )dr " S

with only two parameters K and M according to (3.5)and (3.6).

Equation (3.7) reduces simply to the second order DE for the kcm-system :

2
du A gu=0 3.8)
dr* dr
by putting M equal to zero. K is again equal to k—T . Since the well known expression for the critical
c
value of c:c,, ,is ¢, = 2./km wefind that £ - ¢ = 1 andK = LZ; € being a standard measure

=

for the damping of the kcm-system. For anbther stari@d measure?/fhe Quality (Q-factor), approxi-

mately equal to 1 ,wehave: Q = JK.

2
Forced vibrations
The harmonic response of a material is normally presented in terms of the so-called dynamic mod-
ulus (ratio of the amplitudes of stress and strain or F;,; and u terms of equation (3.2)) and the loss
angle (phase shift between stress and strain), or its tangent: the loss tangent or loss factor: (ref. 1
and 8). These are material-intrinsic (internal) quantities. For clearness’ sake we stress that all expres-
sions figures etc. in this paragraph are independent of mass. In other words: these results hold for any
value of a mass which may be (or may not be) attached to the systems under consideration: SLS and
Kelvin. The result for a SLS under forced harmonic vibration is shown in Figure 4.1. It follows easily

from (3.1), (3.5) and (3.6) that the modulus effect (relative increase of the dynamic modulus when
going from very low to very high frequencies) is f = ﬁ 2

The maximum of tand is:

tcr — trel 1

——————— B e 4-
2,1, 2 KM (KM +1) @D

occurring at the radial frequency:
1
Dy = £E_L__ 4.2)
n JKM (KM +1)
The correspondence between the loss factor tand and otier damping and time-dependent material

parameters is given in Table IIL.1.

2 It is worthwhile to note that the mass included in the definitions of K and M (3.5, 3.6) vanishes in the product KM.
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1 - E’? En
XM = EEand Wiy = — .

For large values of KM (little damping), tané,,, will approximate
This maximum damping frequency is a characteristic frequency (materials property) of a SLg-type

material under forced harmonic vibration, and should be distinguished from the frequency of peri-
odic damping of a free damped SLS-system. That frequency is determined by the materials proper-
ties and the structural parameters (size, mass) of the vibrating system.

The loss peak will be low and broad in case of low damping, reasonably corresponding with little
variation of the loss factor over a wide range of frequencies, as is the case with most solids. This
damping behaviour is often termed solid damping.

It is noteworthy that the shape of the curves is fully determined by k and k, (or: by the relaxed and
the unrelaxed modulus. Changing ¢ will merely result in a shift of the curves along the log  (!) axis.

Bgyw) [GPa]so 25 tghggw)
) 20
i 15
-V A | .
E ] R
. 05
tan ¢
| , UL
0 : 0
1 wwm 100 ot

Figure 4.1 Dynamic modulus (dotted curve) and loss factor (solid curve) for a Standard Linear Solid
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Figure 4.2 Dynamic modulus (dotted curve) and loss factor (solid curve) for a Kelvin - type material

The applied parameters are:
SLS-model: E =10 GPa Kelvin —model: E =10 GPa
E, =333GPa n =1 GPas
n =.25 GPas
Figure 4.2 shows the dynamic modulus and the phase shift of a Kelvin- system.

The dynamic stiffness of that system is k*+ (wc)” and the phase shift between stress and strain .
Yy Y P

2
%€ Or in terms of material parameters: E;, = JE>+(wn) and & = arc tan%n .

8 = arctan T

For comparison, the parameters of the SLS- and Kelvin-systems depicted in Figure 4.1 and
Figure 4.2 have been chosen in such a way that the creep time and the relaxed modulus are the same
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for both systems and that the characteristic features of the curves for both systems are clearly

depicted. Apart from that the parameter choice is arbitrary and not reflecting particular materials.

It can be seen that in the low-frequency region the dynamic moduli of both systems follow each other
fairly closely. Beyond the maximum of the loss factor (SLS-system) the Kelvin-model predicts a
dynamic modulus and a tané running up towards infinity for high frequencies (phase shift between
stress and strain rising to g ) indicating total dissipation of the work exerted upon the system.

This deviates from the actual behaviour of a large majority of building materials which possess very
— or fairly low values of d, remaining fairly constant over a wide frequency range (see references
cited on p.2), and going down towards zero for both very high and very low frequencies (p.3). The
actual dynamic modulus may exhibit a substantial increase (“cross-over”) over a certain frequency
range (the modulus effect) but will then level off to a fairly constant value (Figure 4.1; ref. 1,4 and 8
include many actual examples). It will never rise towards infinity.

We remind once more that these results hold for material-intrinsic (constitutive) behaviour. In engi-
neering practice, attention will often focus upon external quantities: displacements versus exter-
nally applied force (Figure 3.1). Vrouwenvelder (ref. 9) has pointed out that the (mass-dependent)
ratio of the amplitudes of displacement and external force is much less sensitive to the rheological
description of the material (in our case Kelvin or SLS) than the (mass-independent) stress/strain
dependency within the material. We will return to this in § 6.

Free vibrations

General form of free-damped vibrations
Starting again with Equation (3.7) and substituting u = u,¢", we obtain the characteristic equation:

MP+r*+(1+KM)r+K =0 (5.1

It is well known that a third order algebraic equation possesses either
- three real roots r,, r;, ¥, or
- two complex conjugate roots 7;, = — (a = ib) and one real root 7, = - c.%)

We can write the solutions as:

Ale—(axib)r + A2e—¢‘f (52)
or

Ae™™ -cos(br) + Ae™ (5.3)

in which a and c are positive. In the case of periodic solutions b is the radial frequency (referred to
the dimensionless time variable 7).
The actual radial frequency is w = bD = b% (83).

* The symbol ¢ here for one of the roots should not be confused with the damping coefficient in a rheological model
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We furthermore note that the logarithmic decrement (LD) of the periodic vibrations is given

by LD = 27\:% .

Expressions (5.2) and (5.3) present the general form of the free damped vibration of the SLS-system.
We can distinguish the following damping types:

"t THT TaT
1) x=Ae' +Ae’ +Aze’

(ry 7, 75 real negative), fully exponential damping (EXP)

2) x = Ae™cos(bt)+ A"
(a, b, c, real positive), mixed periodic damping and exponential damping (EXPER)
In the latter case we have the subdivision:
(1) a> c with the periodic term damping out more rapidly than the exponential term (EXPer)
(2) a < c with the exponential term vanishing more rapidly than the periodic term (exPER)

\(a) EXP

T

\
\

\\/(b) EXPer
.

T

(¢) exPER

JAWA

\VARV/ ’

Figure 5.1 Damping modes of SLS-type materials
a) EXP; fully exponential damping
b) EXPer; mixed periodic and exponential damping with the periodic term damping
out more rapidly
¢) ExPER; mixed periodic and exponential damping with the exponential term

damping out more rapidly
Figure 5.1 illustrates these vibration modes.

In an article written as early as 1967, Struik (ref. 9) showed that the general form if the free damped
vibrations of a linear material is either:
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- asuperposition of (negative) exponentials (non-periodic damping), or:
- the sum of one exponentially damped harmonic vibration and a number of exponentials (peri-
odic damping).

(The contents of his paper do not seem to have found their way towards the engineering world.)

Clearly, the solution types (1) (EXP) and (2) (EXPER) correspond with Struik's general solution
types. The only distinction with our SLS damping modes is that there can be any number of expo-
nentials in his general result. The distinct modes we have introduced: EXP, EXPER (with subdivi-
sion EXPer and exPER), can be likewise distinguished in Struik's general result. In other words: the
distinction EXP, EXPER (EXPer, exPER) holds quite generally for the free vibrations of linear solids.
Damping similar to exPER is sometimes seen by experimentators and then attributed to “dynamic
effects” or “parasitic impedances” in the measuring set-up. It follows from the present analysis and
Struik’s general result (ref.10) that these researchers may well have seen the actual damping behav-
iour of the material under analysis.

On the other hand there are many cases where the “extra” damping phenomena of the SLS-descrip-
tion (Figure 5.1b and c) are too insignificant to show up. This is obviously the case when ¢ (5.3) is
either very small or very large compared with a. Since it can be shown (Appendix I) that the value
of c/aapproximates 2KM for larger values of K and M we can conclude that these extra damping
features will gradually vanish for larger values of K and M, that is: for materials with little damping
(§ 5.2., Appendices I and II).

For kcm systems we have the well-known results:
u=Ae " cos(br) (exponentially damped harmonic) Jor K >% (54)

u=Ae" + A" (two negative exponentials) for K<} (5.5)

,LD=2 a_ T

with: a=3,b=J4K-1, 7= -
b JaK-1

S|o

i

For low damping (K large ) LD will approximate —Z_ . In terms of k, c and m we have the

~4K
well-known expressions:
L= =2 _ont  with ¢ =S =1 and a)—\/? 5.6)
Jmk  mo ' ¢, 4K Nm® .

KM-diagram
We have solved the third order Equation (4.1) for various intervals and values of the parameter-pair
(K,M), using a programmable scientific calculator?) (Hewlett-Packard: HP48GX). A mathematical

software package for a personal computer can alternatively be employed to obtain the solutions.

4 All symbolic derivations (computer algebra), necessary for this article, were also carried out on the HP48GX.
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When these results are plotted in a KM-diagram (Figure 5.1), different domains can be identified in
the KM-space, corresponding with different types of root-combinations (complex conjugate and /or
real (§4)), representing the damping modes EXP, EXPer and exPER of the SLS-system as distin-
guished in the previous paragraph. Solution types of the kcm - system are also represented in the

diagram.
M
1
0.75
0.5 il
exPER
0.25
0 0.25 0.5 0.75 1

K
Figure 5.2 KM-diagram in which the EXP, EXPer and exPER domains are marked

These domains are separated by the curves (1), (2) and (3) for which the equations are given in
Appendix I. Curves (1) and (2) enclose the domain of fully exponential damping (EXP), correspond-
ing with three (different) real roots. Together, curves (1) and (2) constitute a twodimensional gener-
alization of the critical damping point of the kcm system and can be termed the critical damping curve
for the SLS system. Two of the roots will be equal on (1) and (2). Curves (1) and (2) have one point in
common (P), corresponding with three equal roots:

9

r1=r2=r3=—§

The coordinates of the special point P are:

=%

P 3 , as will be shown in Appendix I.

K 27

M=
Beyond the (1)-(2) domain, there will be mixed periodic and exponential damping (EXPER). Curve
(3) separates the area where exponential damping will be dominant (EXPer, left hand side of (3))
from the essentially periodic damping domain (exPER) on the right hand side of curve (3). The fur-
ther we move away from the (1)-(2) domain (towards higher values of K and/or M) the lower the
damping will be.

The K-axis and the M-axis correspond with the KELVIN system and the MAXWELL-system respec-

tively. Coordinates (} ,0) and (0,} ) correspond with critical damping of these systems; for lower val-
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ues of K and M along the axes there will be (simple) exponential damping; for K (or M) > 1, the
damping will be periodic.

Ideal elastic materials (no damping) correspond with K and/or M infinite.

Purely viscous materials (Newtonian liquids) are represented by the origin of the diagram
(K=M=0).

Many further aspects of the diagram are treated more fully in Appendix I.

_ Discussion

Forced and free vibrations of the kcm system

In § 4 it was shown that in the case of forced vibrations the frequency dependency of the dynamic
modulus and the loss factor tand of the Kelvin-system deviates substantially from the dynamic
response of materials, particularly in the high-frequency region where the predicted stiffness is far
to high.

This discrepancy would tend to under-estimate the predicted dynamic displacements of systems.
The practical effect of this on structures will often be rather limited, firstly because dynamic
response will be small anyway for frequencies appreciably higher than the resonance frequencies,
and more particularly because — as cited (ref.9) in § 4 — the dynamic characteristics of the Kelvin and
SLS systems with a mass attached differ much less than the “internal” quantities: dynamic modulus
and loss factor, of both systems. In this case the Kelvin-description has the advantage of greater sim-
plicity of the pertinent expressions.

There are of course other situations in civil and building research and practice where a full assess-
ment of the time-dependent behaviour of the material is essential for obtaining reliable results.
Examples are: dynamic stiffness contribution of layered components in road constructions or in
composites, propagation and attenuation of mechanical waves in media, force and motion transmis-
sability of damping systems.

In the case of free vibrations the (periodic) solution of its differential equation (3.8), or in unreduced

2
form: m“ii—g + c"ii—’: +ku = 0 is the product of an exponential and a harmonic function (5.4).
t

Although this solution does not conform with the general form of a free damped periodic vibration:
the sum of such an exponentially decaying harmonic function and one ore more exponential func-
tions (Struik, ref. 10), this will not be a serious discrepency in practice because it is the damped har-
monic component that will be of main interest. Furthermore, we have seen (§ 5) that the extra
features of the general solution tend to diminish when going from high- to low-damping materials.
A complication with the (unmodified) kcm-system is the following. If we accept the solution taken

from the DE of the kcm-system as a possibly good approximation in the case of low damping, we
have the result for the logarithmic decrement LD approximately equal to LD = 2mc (5.6)
with ¢, = J4km .

It is well known that a problem arises here: if we would decrease the resonance frequency, say by a
factor 2, by increasing the mass coupled with the system with a factor 4, c,, would increase by a fac-
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tor 2 and LD would decrease by a factor 2 (ref. 2). However the logarithmic decrement of most
materials has the tendency to remain fairly constant over a wide range of frequencies. Here the out-
come is in marked contrast with reality. We will return to this in section 6.2 to see how this compli-

cation is resolved.

Our findings with both free and forced vibrations on the (unmodified) kcm system can also be sum-
marized by stating that the “viscous friction force” c%—-b; (orm % ) in the DE for the system, over-
estimates the rate (and frequency) dependency of that force in most materials.

Modifications of the kem description

There have been numerous attempts with the kem-system to modify the DE, and its outcome, in
order to obtain better correspondence with material behaviour under both forced and free vibra-
tions.

In the case of forced vibrations, worked out in §4, one can introduce a frequency dependency of c. If
we assume — following Beards (ref. 3, p. 25) and many other authors — that c and 7 are inversely
proportional with w over a certain frequency range, then é and E would be constant over that fre-
quency range. This is better in agreement with experiment (ref. 1, 2, 3 and 8), particularly for &. The
result for E is less satisfactory because of the lack of a modulus effect. This is a principal difficulty,
because — as Kramers and Kronig have shown — a non-zero value of d over a certain frequency
range should always be accompanied by a rise of the dynamic modulus and vice versa (Kramers/
Kronig relations, see ref 11). In fact tan é should roughly follow the derivative of E(w) . (Figure 4.1
shows this quite well). Absence of a predicted modulus effect is of course not a practical difficulty in
cases where the modulus effect is very small. However, many fairly low-damping construction
materials (concrete, wood, engineering plastics, asphalt) show a significant modulus-effect.

Let us apply the assumption (c A %) also to the case of free damped vibrations of the kcm system. We
can follow the standard results (5.4), (5.6) for the (unmodified) kcm system and substitute

(c A cl—u> under the assumption that w can be treated as a constant when solving the DE for .
Strictly speaking this is never the case for damped vibrations, because any damped harmonic func-
tion has a certain frequency range. But it is a good approximation in case of low damping because
then the w(Fourier) spectrum of the solution function will be narrow. With ¢ inversely proportional
with w, LD and ¢ will be frequency-independent, in fair agreement with most structural materials.
The more general shape of damped vibrations as given by Struik and shown in this article (Fig. 5.1)
and discussed in § 6.2, requires a description in terms of a third order DE (3.7) and will not appear

in this approximation.

In case of high damping an approximation which follows the standard kcm-solution, with ¢ a function
of frequency, breaks down. A numeric Fourier transformation analysis would be required to estab-
lish the nature (periodic, non-periodic) and the magnitude of the time-dependent displacements.
Adoption of a three-parameter model description — SLS — would seem to be a far more practical

approach in this case.



6.3

The SLS solutions. Solid damping

As shown in §5.1, the SLS - system presents the general form of free damped vibrations. As such it is
an adequate model for describing and interpreting damped vibrations in a variety of materials
including both the regular low damping structural materials, and moderately (asphalt, soils) as well
as high-damping materials (elastomers, foams, fresh concrete). Examples and an application are
given in Appendix IV .

The solution for forced vibrations is also in good agreement with experiment (ref. 1), particularly for
the dynamic modulus (modulus effect). The tand— w curve differs from the fairly constant- 8
behaviour characteristic for many low-damping solids. This discrepancy follows from the fact that
the SLS solid possesses one relaxation mechanism instead of many: the actual situation in many sol-
ids. The relaxation spectra of each of these mechanisms join up to form a on-going tan(8) - w curve
which may be fairly flat (Figure 6.) This is the origin of the “solid damping” of most materials.

The “cross over” of the dynamic modulus will be less steep and will extend over a larger frequency-
range than in the SLS-curve for the modulus effect. These discrepancies will hardly affect the appli-
cability of the SLS model for general engineering analysis of vibrating structures and prediction of

vibration phenomena.
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Figure 6.1 Spectra of three relaxation mechanisms, joining up to form an on-going tan(8) — w curve
(schematically)

Conclusion

Once a Standard-Linear-Solid type description of a material is obtained (with for instance parame-
ters E, E, and n (extensional viscosity)), a dynamic model can often be set up for a specimen or a
structural component of that material according to Figure 1.1, with mechanical parameters k, k,, c
and m (concentrated mass). We have presented the third order differential equation for such a sys-
tem and we have shown that its free damping modes are the general free damping modes of vibrat-
ing materials. The shape and the parameters of its damping curves are related to the material
properties and dimensions in a simple manner. Straight-forward relations can be set up for this
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model between vibration behaviour and other time dependent phenomena such as creep and stress

relaxation.

Of course, as a three-parameter model the SLS model is still an approximation. A full visco-elastic
treatment, such as presented by Struik, or on the basis of a generalised Maxwell-chain model (4),
may be required for some purposes. Such treatments, however, are rather elaborate, both experi-

mentally and mathematically, and stand little chance to be adopted in general engineering practice.

Whereas the SLS description is shown to be more general and more versatile in handling damping
situations in materials and - systems (composites), the standard KELVIN (kcm) model retains its

applicability for low-damping materials and constructions.
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APPENDIX I
Some mathematical aspects of the K,M-equation and the K,M-diagram

® Relating the damping modes with the ratio %’ .

Since KM = kkc (as follows from Equations (3.5) and (3.6)), a SLS-type material with particular
values of its moduli E and E,, , is represented in the KM-diagram by a orthogonal hyperbola

KM = C(onstant).

(Three of these hyperbolas have been drawn in the KM-diagram shown in Appendix I, Figure I.1).
The viscosity (7), and the mass associated with the vibration, will determine the position on the
hyperbola.

It follows from the value of the product of the coordinates K and M at point P: KM = % that these
hyperbolas will only intersect curves (1) and (2) if C > ;. So a SLS material can only enter into fully
exponential damping mode (EXP) if E, > 8E . For E, < 8E the damping will be according to one of
the harmonic modes EXPer or exPER.

Furthermore, we will see in this appendix that the hyperbolas will KM = C only intersect curve (3) if
C <} (E,>2E). This means — in combination with the preceding result E, > 8E - thata SLS sys-
tem can only enter into EXPer mode if E,, is in the interval 2E < E,, < 8E . For ratio's smaller than 2,
exPER is the only possible damping mode of the SLS system.

® Relating the roots with K and M

A third degree equation with roots r,, 1,, r; can be written as:
(r-r)r-r)r-r)=0

or:
T (1, + 1+ 1) P(r ry+ 1oty + 131 )r —1,7,7, =0

If we compare this with:
M~ + 72+ (14KM)r + K = 0 (Equation 3.7)

we find:
1 1 K

—(r+ 1,4 1y) = & i I = +Kand -r,r,r; = M
or, with r,,=—(a = ib) and -r; = c:
2a+c¢ -1 (L1a)

=3 .
24420 = 1%4 +K (L1b)
(ﬂ2+ bZ)C = ]%I (IlC)

o Equations for the curves (1), (2), (3) separating the vibration mode domains in the K,M diagram.

We know that the condition a = ¢ separates the EXPer- and exPER-modes (2 > c and a < c, respec-
tively), and that the periodic and exponential modes (EXPER and EXP) are separated by the condi-
tion b = 0.

Putting a4 = ¢, and eliminating @ and ¢ in Equations (I.1), we obtain:
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KM —im+

3 =0 12)

Ol =

Curve (3) (Figures 5.1 and 1.1) is the graphical representation of Equation (1.2).

The set of Equations (1.2) and KM = C (§5) has real common roots (K,M) only if C <3 .

This means that a SLS-material can only enter in EXPer-vibration mode if E, >2E (Figure 1.1).
Some hyperbolas KM = C with different values of C have been drawn in diagram I.1

If, on the other hand, we put b = 0, one obtains, after eliminating a and ¢ in Equation (I.1):
—1+4K - 20KM +8K>M* + 4M(1 + KM)’= 0 (13)
Curves (1) and (2) are branches of the graphical representation of Equation (I.3).

If we put: b = 0 and a = c (three equal roots), the coordinates of the point P, equaling:

K =Zand M = J, canbe readily deduced from the Equations (L.1a, L1b, L1c).

We note that in this case KM = ;.

Curve (4) connects the positions on the hyperbolas KM=C(onstant) where the logarithmic decre-
ment is at a maximum.

The curve indicates the area where - given a certain material (E, E,) — maximum damping of the
periodic oscillations can be obtained (by adjusting, for instance, the mass associated with the vibra-
tion). The maximum is rather flat for higher values of C (= KM), but very pronounced in the EXPER-

area close to the special position (P). The equation for curve (4) will be given in Appendix II. -

® Approximate solutions for a, b and c.
An excellent approximation in case of low or moderate damping (KM > 5)is:

M
2
KM +T+1 KM? +1

1 1 1 1
. cm—m .M T
M KM*+M+1

a=—r———— b= || K+—- 1—-—'———‘2— H
2 KM +M+1 M (KM2+M+1)

Using the expressions for 2 and b we can obtain the following approximation for the logarithmic
decrement:

LD T 1

KM Jkm?+3M+2
indicating low damping for higher values of KM. (Exact) solutions for 4, b and LD, holding for the
KELVIN-system, were given in §5.
Using the expressions for 2 and ¢ we also obtain the approximation: c¢/a = 2KM for higher values of
K and M. The ratio c/a is of major influence on the shape of the damping curves (§5).
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Figure 1.1 K,M-diagram, showing the EXP-, EXPer- and exPER-domains and the curves (1), (2) and (3)
separating these domains.
Three hyperbolas KM = C, with C = %, C= }} and C = %, corresponding with materials with
creep coefficients 8, 4 and 2 respectively, (see Appendix I1I) have been drawn.

Curve (4) connects the positions on the hyperbolas KM = C where the periodic damping is at a
maximum.
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Logarithmic decrement, particularly in the low damping area.

The SLS description proposed in this article interprets both very high (non periodic) damping, such
as in viscous or viscoplastic materials like fresh concrete and soft soils, and harmonic damping with
any value of the logarithmic decrement. In dealing with building materials periodic damping will
be prominent; particularly materials for structural purposes are essentially elastic in the vibration
domain, with moderate or low damping of free vibrations excited in such materials.

We will therefore study the periodic damping in more detail in this Appendix, with special atten-
tion to the logarithmic decrement (LD). Results will again be presented in the KM-diagram, with
double logarithmic representation more practical when a wide range of K and M values is to be sur-

veyed.

We will first present a generalisation of curves (1) and (2). In §5, these curves were shown to sepa-
rate the area of the KM-diagram where the damping is fully non-periodic (the EXP area) and the
remaining area with periodic damping (EXPer or exPER). This means that the periodic damping is
at a maximum on these curves, corresponding with LD = oo(b = 0) . The expression for curves for
any other value of LD can be obtained from the expressions (I.1) after extensive algebraic manipula-

tion. The expression is:

2
(w=3)(K + M (1+ KM ) )+ (2w+3)(1+ KM )’ —((W;3) - ((5::)) KM\] =0 (IL1)
2 .
in which w=—f—”—2‘ .
(D)
Equation (II.1) is not valid for w = 3. In that case we have:
K+M(1+KM) - (1+ kM) =0 (IL1a)

One can easily check that Equation (II.1) reduces to Equation (I.3) for w = 0 (LD = ).
Curves for constant LD representing Equation II.1 are drawn in Figures II.1 and II.2, using linear

and logarithmic axes respectively.

In the logarithmic KM-diagram (Figure I1.2) we can again study the behaviour of a SLS-system

(E, E, fixed) of which the damping is altered by either changing the viscosity itself or the mass asso-
ciated with the vibration. We have already noted that for such a system KM = E/E, is a constant,
meaning that upon alteration of ¢ and/or m the system moves along a hyperbola KM = C (or a
straight line log K + log M = log C in a logarithmic presentation). We note now that for any specific
LD curve, there will be a line KM = C, with a specific value of C, contacting the LD-curve. The point
of contact is at

K=Jc(+c), M=\c(1+c)’ 12



and this is the position of the maximum of LD, mentioned already in Appendix I, when the material
moves along the line KM = C.

The positions of these LD-maxima for different C-values are located on curve (4) with equation:
M(1+KMY -K=0 (1L3)

For high values of K this equation is approximated by M = %( .

In special position (P) — which is also on curve (4) — the periodic component will vanish and LD will

be infinite.

The expressions for Equations I1.2 and I1.3 as well as the co-ordinates K and M of the point of contact
can be obtained fairly easily when the intersections of curves (II.1) and hyperbolas KM = C are stud-
ied algebraically. These (two) intersections should coalesce at the positions of the maximum points,
from which a relation between w and ¢ can be obtained.

\ (3)

Figure II.1 K,M-diagram.
Constant LD (Logarithmic Decrement) curves have been drawn for the LD-values indicated:
2.5, 5,10 and o . Curve (4) connects the maxima of LD on the hyperbolas KM = C (shown in
Figure 1.1, not shown here).
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Figure I1.2 K,M-diagram with logarithmic K- and M-axis. LD-curves have been drawn for values indicated

in the diagram.

As an example the LD-curve for 1.33 touching line KM=1 is shown. The point of contact is at
position K = 2./2 and M = iﬁ (using Equation I.2).

LD =1.33 (Table I1.1) is the maximum value of LD on the line KM = 1.

Appendix III

Interrelationships between various parameters
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It is well known that creep and stress-relaxation of a SLS-type material under uniaxial load are
determined by a short term ("unrelaxed") modulus, E,,.;, a long term ("relaxed") modulus,E,,; , and
an extensional viscosity , determining the creep rate and the relaxation rate. The correspondence

with the parameters of the mechanical model introduced in §1 is:

N N S
k=7Eul; kc =7(Eunrel_El¢l); C__'—[” (IL1)
withE,,= Eand E,,,—E,,= E, , in which § and £ are the cross-section and the length of a rod-shaped
specimen of the particular material under load. It follows from Equation (IIL.1) that the ratio's

between k, k., and c are independent of the dimensions (S,/) of the specimen.



The uniaxial constitutive equation for a Standard Linear Solid is:

041,90 gl e4s, % (L.2)
dt T dt
with £, the creep time, and ¢,,,the relaxation time, according to:
=g —L L |-c,L (I11.22)
Epa—Ey E, ko k
1 c
‘= =< TI1.2b
™ 7 Euml - Erel k(,' ( )
3 T T T T
2

SLS relaxation curve

FigureIlI.1 Creep curve and stress relaxation curve for a SLS-type material with E =E,. The creep curve of a
Kelvin-type material with the same relaxed modulus and the same creep time is also shown.

Creep and stress relaxation are shown schematically in Figure III.1 for a material with a creep coeffi-
cient (@) equal to 1.
Since: ¢ = Lo _ Ii“ =1

PEL Tk T kM
we find that hyperbolas KM = constant in the KM diagram correspond with materials with a partic-
ular value of their creep coefficient.

The above-given summary of the deformation - and dynamic properties of a SLS material shows
that the essential quantities: creep coefficient, relaxation modulus, loss angle, etc., are all very sim-
ply related to the parameters K and M which we have introduced in our treatment of the free damp-

ing behaviour.
It can be seen from Figure IIL.1 that a KELVIN type material has a creep coefficient which is infinite.

The unrelaxed creep modulus and relaxation modulus are also infinite. This demonstrates once
more that the KELVIN model fails to simulate actual time dependent material behaviour.
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Table II1.1 Corresponding values of the creep coefficient (1/C) and the maximum periodic
damping (LD,,,) of a SLS. The characteristic properties of a material under forced
vibrations (Appendix III): modulus effect and (9),,,, , are also included in the table.

1 C LD, tan(o) ...
C
YC=¢ _k_E _ Maximum values of 0 is phase shift
creep coefficient, "% E kM logarithmic decrement between stress and -
also: modulus effect ° for corresponding strain under harmonic
k load
— -values
kC
.001 1000 0.00157 0.0005
.003 333 0.00471 0.0015
.01 100 0.0157 0.005
.03 33 0.0468 0.0148
1 10 0.153 0.0477
3 3.3 0.442 0.1316
1 1 1.33 0.3535
3 .33 3.63 0.75
5 2 6.61 1.02
8 125 = 1.33

Table IIL.1 lists a number of C- and corresponding LD-values. In this appendix we have shown that
the value of C (= KM) of a Standard Linear Solid measures the creep, stress relaxation and modulus
effect of a SLS. We have seen that 1/C is the creep coefficient. So, Table II.1 connects the maximum
damping (maximum LD) of a SLS material with its creep factor, and we see that the SLS-description
allows a rational connection between these different time-dependent material properties.

It should be reminded that these connections have been derived for the SLS-model. Materials may
have several relaxation mechanisms (§ 2) over a wide time-domain. As a consequence a relation

between for instance creep and free damping behaviour will only hold in a particular frequency (or:
time) region, as explained at the end of § 2.




APPENDIX IV

Some examples

IV-1 Typical examples of SLS-representations for steel, concrete, and organic materials.
E-values in GPa , n in GPas.

The data in the table below are of an indicative nature. It should be reminded that a SLS-description
of a vibrating system includes — in addition to material properties — its dimensions and the mass
associated with it. With the exception of E and E,, its parameters are generally not intrinsic material
properties. Moreover the material properties related to damping may also be dimension-dependent
(§2)-

E is the relaxed (static) modulus, E + E 18 the unrelaxed modulus. The tand data were taken from vari-
ous literature sources. E, follows from tand using Equation (4.1)

Data for 7 in the table were set — rather arbitrarely — in such a manner that the “flat” maximum of
tand is around 10 c/s.

The LD-value will of course depend on the mass attached to the system. LD, however, can be esti-

mated using the expressions given in Appendix II. For very low damping we have:

LDy _
tans,,.

E E, KM 7 tan(5) LD,
Steel 210 0.15 1400 0.0024 0.0003 0.001
Concrete 30 1.2 25 0.019 0.02 0.06
Wood 12 1.5 8 0.024 0.06 0.2
PMMA 3 0.6 5 0.001 0.1 0.3
Cork 0.03 0.01 3 0.0002 0.15 0.5

A good procedure for setting up a SLS description for a unknown material system would be to
measure the dynamic modulus and loss factor as a function of frequency (ref. 8) in order to deter-
mine E, E, and tan(3) — w the dependency. 7 could then be adjusted to “fit” this dependency for
the frequency region under consideration.

If a measured or published value of tan § is fairly constant, it seems best to set tan 3,,,,, in the middle
of the frequency region of interest. This ensures that discrepencies for tan 8 and LD for other fre-
quencies will be minimal.

IV-2 Worked-out example for a bituminous composite
Let us consider a bituminous material for which the deformation behaviour is approximated by the
MAXWELL-model, with E = 3GPa, and with extensional viscosity n = 1 GPas at room temperature.

We wish to study the longitudinal free vibrations of a specimen (Figure IV.1) with length ¢ =1m
and cross-section : § = 0.01 m%
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a) of the material as such;
b) of the material reinforced (stiffened and strengthened) with 1% (by volume, V = 0.01) of continu-
ous steel wiring in the longitudinal direction.

For simplicity, we will approximate the dynamics in both cases by concentrating the mass (m) of the
material at the free end of the specimen (the other end clamped), in accordance with Figure 1.1.
However, in order to obtain agreement of the vibration frequency of the concentrated mass model
with the fundamental mode frequency of our beam-shaped continuous specimen, the value of the
concentrated mass should be set at ., = —m rather than m. (The above mentioned frequencies
will then be exactly the same in the purily elastic case.)

Lateral effects (Poisson contraction) will be neglected. The only damping mechanism considered

will be the viscosity of the bituminous material.

7

Figure IV.1 Specimen of a bituminous material reinforced with steel wiring.

Clearly the composite material (b) is a standard linear solid, with:

ko= 210%v GN/m = 21.0-10° N/m
k, = 3%(1—V)GN/m = 29.7-10° N/m
c = l%(l—V)GNs/m = 9.7-10° Ns/m
m = (7800V +1000(1-V))S¢ = 10.68 kg
Moy = = 433 kg

In the expressions given above we use the (approximate) values for the moduli and the specific

masses of the composing materials.

Following the definitions (3.5) and (3.6) of our parameters K and M, we find that K = 0.927-10°and
M =0.762-10°.

It follows from §5 and Figure 5.1 that system (b) is in an EXPER-mode, with one real and two com-
plex conjugate roots of the characteristic equation.

The values of 4, b and ¢ obtained are: a = 0.384-10%, b = 1.496-10°, ¢ = 0.543-10°.

The logarithmic decrement of the vibrations will accordingly be 0.00162, indicating very low
damping.



Using D = % (83), the damping frequency f (f = zﬂ” , wis radial frequency) is found to be 544 c/s.
Figure IV.2 illustrates the damping behaviour.

Case (a) corresponds with a simple MAXWELL system with M = 0.822-10°. Since M (highly) exceeds
the value for critical damping (} ), there will be periodic damping, with LD = 0.0035 and with fre-
quency 405 c/s.

We will elaborate somewhat on the second example (system (b)) by lowering the viscosity of the
reinforced bituminous material (corresponding with higher temperatures). Similar extensions in the
K,M domain could be made by varying the length of the specimen, or the volume fraction of the
steel reinforcement. '

| &

We first note that KM = ~ = 0.707 , independent of viscosity and temperature. This means that

=
s

the system will move along the hyperbola KM = 0.707 in the K,M-diagram when the viscosity is
altered. Since KM exceeds é , this system will never be in the fully exponential damping mode EXP
(Appendix I).

Furthermore, since 0.707 > 0.5 (0.5 is the upper limit value of KM for EXPer-damping, Appendix I),
the material will vibrate according to the exPER damping mode and there will be no transition from
exPER to EXPer damping. (We would have had such a transition if the reinforcement percentage
would have been % % instead of 1 %).

At the special position K = M (c = 10399, n = 1.05 MPas), we obtain LD = 1.477 and f=428c/s.

On lowering the viscosity slightly further, a maximum of the logarithmic decrement can be
obtained (maximum damping of the periodic component). Using expressions (I.2) we find that the
maximum is at K = 1.875, M = 0.377. The maximum is 1.81, which means very rapid damping of the
periodic component. The corresponding frequency is 419 c/s.

At still lower viscosities (kPas-range) damping will be very low again, with LD of the order of 0.003.

Table IV.1 lists the vibration and damping parameters of the material for viscosity values ranging

from 1 GPas to 1 kPas.
Figures IV 2 illustrate the damping behaviour at a viscosity 1 GPas and 1 MPas, respectively.
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Table IV.1 Vibration and damping parameters of material (b) for a wide range of viscosity values

Extensional K M KM Logarithmic Frequency
viscosity decrement LD | (c/s)
1 GPas 0.927.10° 0.762.10° 0.707 0.00162 544
1.05 MPas 0.841 0.841 (=K) 0.707 1.477 482
1  MPas 0.927 0.762 0.707 1.539 475
0.703 MPas 1.875 0.377 0.707 1.81 (max) 419
1 kPas 0.927.10° 0,762.10° 0.707 0.00326 350

1 GPas

E t
1 MPas

%

Figure IV.2 Free damped vibrations of material (b) at viscosity values 1 GPas and 1 MPas



