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The fracture process in heterogeneous materials (e.g., concrete, rock, aggregate composites) under
uniaxial compression proceeds in three stages differing in the scale levels involved. Stage 1 is the
accumulation of wing cracks formed under compression from pre-existing defects. The wing cracks
themselves cannot grow to an extent sufficient to cause failure. However, they produce an additional
self-equilibrating and, in general, spatially random stress field. Therefore, some places can be found
in the sample subjected to tensile stress components acting in the direction perpendicular to the
direction of the applied compression and hence not getting suppressed by it. The magnitude of these
tensile stresses increases as a square root of the wing crack concentration and, as the wing cracks
accumulate, becomes sufficient to produce new tensile fractures. This starts Stage 2 in which these
tensile fractures grow in a stable manner parallel to the direction of compression and become
mesocracks (i.e., their sizes are now larger than the ones of the wing cracks, but still small compared
to the sample dimensions). It is assumed that mesocracks grow in such a way to avoid wing cracks.
Thus, the mean value of the part of the wing crack-produced random stress field that affects each
mesocrack is positive (tensile), which eventually initiates the unstable grows of mesocracks and

causes failure. This constitutes Stage 3 of the fracture process.
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1 Introduction

Three main modes of failure of heterogeneous materials under uniaxial compression are recognised
(e.g., Paul, 1968): (a) splitting in which the sample gets broken into a number of columns parallel to
the compression direction; (b) shear (oblique) failure in which one inclined macrocrack separates the
sample into two and; (c) spalling in which small chips are ejected from the surface making the
sample thinner and eventually producing its ultimate failure. The particular type of failure is
supposed to be controlled the loading conditions (e.g., Paul, 1968; Peng and Johnson, 1972; van Vliet
and van Mier, 1996) or by the material microstructure (e.g., Santiago and Hildsorf, 1973; Dyskin et
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al., 1996b, Sahouryeh and Dyskin, 1997). In all these cases it is apparent that the failure is ultimately
caused by propagation of internal (pre-existing) cracks towards the direction of load (e.g., Brady,
1976; Atkinson, 1981; Allegre et al., 1982), some of which propagate so extensively that they even-
tually break the material. It is confirmed by numerous observations of cracks in sections made from
samples loaded at different stress levels; the observations clearly demonstrate the increase in the
crack length with the increase of loading (e.g., Peng and Johnson, 1972; Sangha et al., 1974).
Accordingly, a lot of efforts starting from the pioneering work by Griffith (1924) was directed
towards modelling the failure mechanisms based on crack formation and propagation (e.g., Brace
and Bombolakis, 1963; Hoek and Bieniawski, 1965; Brace et al., 1966; Fairhurst and Cook, 1966;
Gol'dstein et al., 1974; Adams and Sines, 1978; Dey and Chi-Yuen Wang, 1981; Wittmann, 1981;
Zaitsev, 1983; Nemat-Nasser and Horii, 1982; Galybin, 1985; Horii and Nemat-Nasser, 1985, 1986;
Ashby and Hallam, 1986; Sammis and Ashby, 1986; Dyskin and Salganik, 1987; Germanovich and
Dyskin, 1988; Fanella and Krajcinovic, 1988; Gramberg, 1989; Talonov and Tulinov, 1989; Ashby
and Sammis, 1990; Cannon et al., 1990; Schulson et al., 1991; Dyskin et al., 1991, 1992, 1993, 1994a, b,
1996a, b; Germanovich et al., 1990, 1993, 1994a, b; Dyskin and Germanovich, 1993; Sadowski, 1994;
Labuz et al, 1996; see also the review by Wang and Shrive, 1995).

Other concepts, not based on mechanisms of crack propagation, were also proposed assuming that
the macrocrack formation is only a final stage of the failure process. First to be mentioned is the
concept of the accumulation of possibly non-growing cracks or, in general, defects (e.g., Scholz,
1968) with the following localisation (due for example to their interaction, e.g., Horii, 1993; Okui
and Horii, 1994; Bazant and Xiang, 1997) and coalescence into a macroscopic fracture (e.g., Paul,
1968; Dey and Wang, 1981; Wong, 1982; Du and Aydin, 1991; Lockner et al., 1992; Ashby and
Hallam, 1986; Krajcinovic, 1996; Blechman, 1997a, b). There is however a problem in visualising the
mechanism of crack coalescence, since even in tension cracks try to avoid each other (Melin, 1983).
It is even more difficult in 3-D where cracks do not necessarily coplanar (see also discussion in
Germanovich et al., 1994a). Bazant and Xiang (1997) considered a mechanism based on forming
shear bands consisting of slim columns (beams) by locally growing cracks. This beams subse-
quently buckle causing the failure. This model is also 2-dimensional; it is not clear why in 3-D the
growing cracks are going to arrange themselves not only parallel but also close to each other to form
slim columns.

Another mechanism being considered is strain localisation due to local post-peak softening of the
material (e.g., Papanastasiou and Vardoulakis, 1994; Vardoulakis and Sulem, 1995). This approach
merely transforms the difficulties of finding the mechanism of deformation and fracture to a micro-
scale.

The advance in computers made possible direct simulations of the interaction of numerous
elements of material microstructure. In compression this was performed by considering the inter-
action between many wing cracks (e.g., Horii, 1993; Okui and Horii, 1994), by modelling the micro-
structure as lattice or beam networks (e.g., van Mier, 1992) or as assemblies of random particles
with different types of contact interaction, which are variants of the distinct element method (e.g.,
Bazant et al., 1990). (Blair et al, 1993) conducted computer simulation of failure in compression
which accounted for the random stress field originated from the material heterogeneity by intro-
ducing a stress perturbation term (it was not clear from the paper whether the equilibrium equa-
tions were kept satisfied after the random perturbance).



In the present paper mechanisms of crack propagation are considered and a 3-stage, three-
dimensional model is proposed.

Mechanisms of crack initiation and growth in uniaxial compression

In perfectly homogeneous materials, uniaxial compression does not cause any tensile stresses,
therefore no crack generation or growth are possible. Hence, the observed phenomena of crack
growth significantly depend on the material heterogeneity. The elements of material heterogeneity
(inhomogeneities, pores, cracks, etc.) act as stress concentrators producing local stress redistri-
bution, generating local tension and thus initiating local failure and crack growth.

In compression, the role of initial, pre-existing cracks was investigated by (Brace and Bombolakis,
1963; Hoek and Bieniawski, 1965; Brace et al., 1966; Fairhurst and Cook, 1966; Dey and Chi-Yuen
Wang, 1981; Nemat-Nasser and Horii, 1982; Horii and Nemat-Nasser, 1985, 1986; Ashby and
Hallam, 1986; Dyskin and Salganik, 1987; Germanovich and Dyskin, 1988; Talonov and Tulinov,
1989; Ashby and Sammis, 1990; Cannon et al., 1990; Schulson et al., 1991; Theocaris and Sakellariou,
1991; Dyskin et al., 1991, 1994a, b; Germanovich et al., 1990, 1993, 1994a; Dyskin and Germanovich,
1993; Li and Nordlung, 1993; Baud et al, 1996), the role of pores by (Gol’dstein et al., 1974; Zaitsev,
1983; Galybin, 1985; Sammis and Ashby, 1986; Isida and Nemat-Nasser, 1987; Kemeny and Cook,
1991; Dyskin et al., 1992, 1993) and of stiff inhomogeneities (e.g., Bazant and Xiang, 1997; Blechman,
1997a, b). The initial, pre-existing cracks with contacted faces can be considered as the strongest
source of the secondary crack growth, at least in comparison with pores (Dyskin et al., 1992, 1993).
The main feature of the crack growth in uniaxial compression, as emerged from the 2-D experi-
ments and analyses, is their capacity for extensive growth (at least for initial cracks and pores)
which has been believed to be the main mechanism of splitting.

The majority of cited works were devoted to studying the 2-D case mainly because of enormous
technical difficulties related to 3-D studies. However, with the advance of experimental techniques
the 3-D studies became possible. Adams and Sines (1978) used a transparent plastic (polymethyl-
methacrylate) with disk-like flaws created inside the sample by cutting it into two blocks, machin-
ing semi-circular inclined slots into each block and then cementing them together. Only restricted
crack growth was observed which could have been attributed to insufficient dimensions of the
sample. However, further experiments on growth of internal 3-D cracks in sample from various
materials (Dyskin et al., 1994a, b; Germanovich et al., 1994a, b) sufficiently large compared to the
initial crack sizes showed that it is an intrinsic feature of the 3-D wing cracks that they are not
capable of extensive growth in compression sufficient to cause failure.

Nevertheless, in large numbers, the wing cracks produce new tensile fractures or cracks extensively
growing towards compression produced by the superposition of additional stresses generated by
the wing cracks at places where the components acting in the directions perpendicular to the com-
pression axis are tensile (in these directions they are not suppressed by the applied compression,
Dyskin et al., 1996a). These stress components are self-equilibrating in the sense that their average is
zero (Blair et al, 1993; Dyskin, 1997; Bazant and Xiang, 1997) and most probably random (Dyskin,
1997) due to the random nature of the wing crack locations and dimensions.
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The theory of crack growth caused by spatially random stress fields was proposed by (Dyskin,
1997) for the case when the crack is created by the random stress fluctuation (or evolves from a pre-
existing microcrack which dimensions are not high as compared to the correlation radius of the
stress fluctuations). In this case the crack will obviously be created at the place of the maximum
stress. This was shown to result in a non-zero total force associated with the stress fluctuations
(even self-equilibrating), which constitutes a special mechanism of crack growth (it should be noted
that for a large crack independently located in the random stress field, the stress fluctuations will be

averaged out, so the total force associated with the stress fluctuations will be zero).

Mechanism of failure in uniaxial compression

On the basis of previous experimental and theoretical analysis it is possible to envisage the follow-
ing mechanism of failure in uniaxial compression (see also Dyskin and Sahouryeh, 1997). Failure
preparation starts with the formation and accumulation of wing cracks (Figure 1) producing an
additional stress field which is obviously self-equilibrating and, hence, its normal components are
compressive in some areas and tensile in others. This will be called Stage 1 of fracture process in

compression.

1. Wing crack accumulation 2. Mesocrack growth Failure

Fig. 1. Three-stage mechanism of fracture in uniaxial compression (after Dyskin and Sahouryeh, 1997)

The tensile stresses in the directions perpendicular to the compression axis do not get suppressed
by the applied axial compression. Hence, as the loading proceeds and the number of wing cracks
increases, these tensile stresses get stronger and can form large tensile fractures, macroscopic with
respect to wing cracks, but still small compared to the sample dimensions. They will be called
mesocracks. This starts Stage 2 which also covers the phase of stable growth of mesocracks. Further
loading will lead to unstable growth of mesocracks and failure. This unstable phase constitutes
Stage 3, the formation of macroscopic failure. It seems that it is this stage at which the particular

failure mode (splitting or shear failure) becomes apparent.
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Thus the role of Stage 1 is to produce the wing cracks in sufficient concentrations to cause the
initiation and growth of mesocracks. At Stage 2, as the mesocracks grow, they open and produce
dilatancy (inelastic increase in the sample volume, e.g., Brace et al., 1996), the effect which
previously was attributed to the wing cracks themselves (e.g., Dyskin and Salganik 1987;
Germanovich and Dyskin 1988; Dyskin et al, 1991; Kemeny, 1991).

Model of dilatancy and fracture in uniaxial compression

Stage 1. Stresses generated by wing cracks

The wing cracks are formed from sliding pre-existing cracks. In the case when a pre-existing crack is
disk-like, the developed wing crack may look like shown in Figure 2 which demonstrates the results
of a uniaxial compressive loading of a transparent sample with an internal crack (Dyskin et al.,
1994a). The picture corresponds to the maximum achievable size of the wing crack (i.e., the situa-
tion immediately before the load reached the strength of the matrix).

Since the wing cracks themselves cannot grow extensively they do not cause failure. Furthermore,
because their dimensions are much smaller than the dimensions of the mesocracks their opening is
also much smaller therefore the wing crack contribution to dilatancy can be neglected as compared
to the one of the mesocracks. It should be noted that the wing crack formation produces acoustic
emission, however at Stage 2 (the stage of mesocrack growth) the cumulative number of acoustic
events is known to be proportional to dilatancy (Scholtz, 1968; Sano et al., 1981). The analysis shows
(Dyskin, 1989) that this acoustic emission is related to the mesocrack growth. The proposed model-
ling therefore only concerns with the determination of statistical properties of the stress fluctuations
generated by the wing cracks, which is required to model the mesocrack growth and opening.

The determination of statistical properties of the stress generated by defects or wing cracks is
generally complicated by the necessity to account for the interaction between many defects.
Calculating the interaction presumes that each defect should be considered as being loaded by a
superposition of two stress fields: the external (original) stress field and an additional one which is
the sum of stress disturbances introduced by all other defects in the continuum material on the
position of the defect in question.

Contact area
former initial crack

Lateral parts of
the initial crack
contour

Wing

Fig. 2. The wing crack (after Dyskin et al., 1994a).
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For wing cracks however, the influence of this additional stress field is minor. This is because the
wing cracks are developed from pre-existing initial shear cracks inclined to the compression axis
with both shearing over the initial cracks and the resulting wing opening mainly controlled by the
high axial compression. Therefore, the change in the opening associated with the influence of addi-
tional stresses produced by other cracks can, in the first approximation, be neglected (due to friction
between the surfaces of the initial cracks, it is unlikely that the stress fluctuations can produce any
substantial changes in the shearing). As a result, the random stress fluctuations can be computed as
a superposition of the additional stresses generated by randomly located defects each being consid-
ered as subjected only to the original stress field.

The modelling will be based on calculating the random stress field as the superposition of the fields
produced by individual non-interacting wing cracks. In order to avoid technical difficulties the
wing cracks will be modelled by point defects producing asymptotically, at large distances, the
same stress field as the original wing cracks. This is equivalent to representing the wing crack as a
combination of force dipoles (e.g., Dyskin and Miihlhaus, 1995), Figure 3.

d

'~

i

Fig. 3. Modelling of a wing crack with a combination of force dipoles.

This approximation, called the dipole asymptotics (e.g., Dyskin and Miihlhaus, 1995; Dyskin et al.,
1996a), has a strong non-integrable singularity at the origin, which requires the introduction of
excluded volumes surrounding each wing crack whose size is an additional parameter. In general,
this is an artificial construction, since real cracks do not produce non-integrable singularities.
Furthermore, when the mesocrack growth is considered, the wing crack-generated stress
fluctuations should be computed at all points including the ones close to wing cracks. In this case
the errors associated with the singularity in the dipole asymptotic stress representation can be large.
There is nevertheless a case when the simplification offered by the dipole asymptotics for calcu-
lating the influence of the stress fluctuations on the growth of a mesocrack is still possible. This is
the case of mesocracks growing in such a way that they avoid the wing cracks thus effectively form-
ing excluded volumes where the stress field does not have to be evaluated.



The existence of this type of excluded volumes still remains to be confirmed, but there is already
some information indicating that such a situation is possible at least for the mechanism of
mesocrack growth in uniaxial compression. Germanovich et al. (1994b) (see also Dyskin et al., 1994b)
have found from testing of transparent samples with internal disk-like cracks in uniaxial comp-
ression that if one 3-D crack is located in the path of another, the latter will neither get through, nor
get arrested as routinely observed in 2-D tests (eg, Horii and Nemat-Nasser, 1985). Instead, it will
merely flow around the crack-obstacle and proceed further. Cut-sections of rocks (eg, Peng and
Johnson, 1972) also show traces of large cracks growing in the direction of uniaxial compression
avoiding small ones.

These observations prompt a hypothesis that the wing cracks are surrounded by excluded volumes
which are avoided by the mesocrack in the course of its growth. Then, if the wing crack-generated
random stress field is considered from the point of view of its effect on the mesocrack propagation,
only the points that are outside the excluded volumes should be taken care of. In the following
simplified consideration the excluded volumes will be assumed spherical with the radius 4 equal to
the characteristic size of the wing crack , i.e. to the radius of the initial crack.

The dipole asymptotics for wing crack in an isotropic material, is expressed in coordinate set
(21,%,,x,) with the origin at the crack centre as follows (Gol’dstein and Kaptsov, 1982)

. (A-2v)u 1-40
Acy(&) = 4ﬂ(1_v)§3{5ij[1_2vukk sw} o

+§,ié,j|:% - 3”1(1(} - %)[E.;,jé,kuki + é,j&,kukj] = 2uy }

Here W=u,&.8,, £=1&1, u, is the symmetrical tensor of dipole moments (eg, Dyskin et al., 1996a),
“,i” is derivative with respect to x,and summation is presumed over repeated indices, u is the shear
modulus, v is Poisson’s ratio.

The components of the tensor of dipole moments will be found for the case when the wing cracks
are fully developed, i.e. they have reached their maximum dimensions. A model proposed by
Dyskin et al. (1996a) will be used according to which the maximum total volume of opening of both

wings produced by pre-existing cracks is

Voo =pd (2-Vv) 2)
wing pa (1+V)2l.l

where a is the radius of the initial crack, Figures 2, 3.

Then, taking into account that the wing cracks grow axisymmetrically with respect to the direction
of compression, the corresponding component of the tensor of dipole moments is assumed equal to
the maximum total volume of opening of both wings produced by pre-existing cracks (Dyskin et al.,
1996a), averaged over all inclinations of initial cracks to the loading directions. This gives

Uy = Oy (1~ 5k3)Vwing/7'5 (6]

Expressions (1)-(3) allow calculating the statistical properties of the stress field outside the excluded

volume.
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Statistical properties of wing crack - generated stresses
Consider the stress field generated by wing cracks located at homogeneously random points &, in a

volume V. The stress tensor at a point x is

o(x) = o'+ 0,(x. &) @

Here ¢’ is the stress which would be created by the external load in the absence of wing cracks, let
this stress field be uniform, and oy, (x, §,) is the additional stress generated by a wing crack located
at a point &, in the volume V (here s,(x, &,) is the exact value; its dipole asymptotics will be used
later).

Suppose the interaction between the wing cracks can be neglected. Then for the case of equal
excluded volumes, V,, the expected value is (due to the statistical homogeneity it is sufficient to

consider stresses only at the origin)
_ 0 M
(0 = o'+ o [ 0.0,V

V-v,

®)

_ 0 M B

= 4 VODG"(O’ £)dV, jov(o, g)dvg}
\% Vo

where M is the number of wing cracks in volume V. As V — oo, since the integral over V can be set

equal to zero (e.g., Germanovich and Dyskin, 1994c), (5) assumes the form

(0 = &’ -N[o(&)dve ©
\"

0

where N is the number of wing cracks per unit volume.
For low wing crack concentrations when the influence of the excluded volumes on their distribution
is negligible, the random variables &, can be presumed statistically independent. Then the

correlation function, B(x) = <6(0)0(x)>-<0>%, assumes the form

B®) = (o(0)o(x) ~(0)* = N [ o(&)a(&-xdVe )

Vv,

For the sake of simplicity the excluded volumes are assumed to be spheres of radius a. Let the
uniaxial compression be applied in the x; direction. Only one component of the additional stresses,
0, will be considered (the correlation between different component is neglected). Hereafter, o, B
mean oy, B;.

After substituting (2) and (3) into (1) and then the results into (6), (7) one can find the mean, <>,

and the variance, B(0):

2
2(2-v)d(v) _pw, B(0) = 2-v)I(v) 2

(o) = 2
157(1 - v)(1 + V) 47°(1 - V)

@®)



43

where w = Na® is the dimensionless concentration of the excluded volumes which, in accordance to
the way they are chosen, is approximately equal to the concentration of initial (pre-existing) cracks,
p is the magnitude of the applied compression,:

D(v) = 3(3+5v), (V) = 4(4V* +240/7 +39/7)/15 ©)

It should be emphasised that because the mesocracks grow avoiding the excluded volumes, <o> is
positive, so the mesocracks are in average subjected to uniform tensile stress in the directions
perpendicular to that of compression. This stress will be called the background tensile stress. Its
magnitude, according to (8), is proportional to the concentration of initial (pre-existing) cracks.
The magnitude of the stress fluctuations characterised by their standard deviation, B(0)'/?, is
proportional to square root of the concentration of initial cracks.

Another important statistical characteristics of the random stress field is the average correlation

radius which is the size of an area where the statistical dependence is essential
X

p = (P p(m) = BO) [B(tmdt (10)
0

Here averaging is performed over all orientations of the unit vector 7.

For the considered case (see Dyskin, 1997)

p = J(v)a, J(v) = 0.863 — 0216V (11

where 4 is the radius of the initial crack.

It is seen that the correlation radius is of the order of the wing crack size.

Mesocrack initiation

It will now be assumed that the random stress field generated by the wing cracks can be approxi-
mated by the Gaussian one, i.e. its statistical behaviour can completely be determined by the tensors
<o> and B(x).

Suppose the stress magnitude is sufficient to produce local fractures (cracks) somewhere in the
material. Obviously this will first (i.e., at the minimal external load) happen at a location where the
magnitude of stress, 6(0)>0, is a maximum. Let us put the origin of a Cartesian coordinate frame at
this place. In a vicinity of the origin, the stress distribution will be determined by o(0). The average
distribution of the corresponding stress component in the intact material on the plane (x,, x;) where
the crack will be located has the form (e.g., Feller, 1971):1

(o(x)|a(0)) = (0) + (Ao(x)), (Ao(x)) = [0(0)~(0)]B(x)/B(0) (12)

where <:|-> stands for the conditional mathematical expectation and x = (x,, x;).

When the crack is initiated, the problem of determining its opening can formally be solved by
considering the crack loaded by tractions equal, with inverse sign, to the corresponding stress com-
ponents acting in the original material. This means that there is no direct back influence of the crack
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on the original stress field, unless the crack affects the sources of the stresses (wing cracks). Only the
case when the crack’s influence on the stress-generating wing cracks (or, generally, defects) can be
neglected will be considered here.

As the crack grows, it is subjected to additional tractions having a mean <Ao(x,, x;)>, in excess of the
usual mean stress <o>. This additional load is solely due to the special location from which the
crack has evolved and is a result of stress fluctuations.

It should be noted that in principle there might also be additional shear tractions acting on the crack
if at least one shear component is correlated with the normal one. Then the mechanism and direc-
tion of crack growth will be affected. However, in the considered case the direction of crack growth
is determined by the direction of the applied compression. Therefore the influence of the shear
traction can in the first approximation be neglected.

In order to make the following analysis possible the correlation function will be presumed to vanish
strongly enough as |x| — o, s0, in average, the crack can be modelled as a crack loaded by uniform
stress <o> and a pair of concentrated forces (see Dyskin, 1997) with the magnitude

0)-(o 1
F = [(Ao()ydxdx, = & KK = B(x)dx,dx (13)
I.{[ 1 2 ,—B(O) ,—B(O)I‘{[ 1 2
For the considered case (see Dyskin, 1997)
Kk = P(0)a*B(0)'?, W(v) =5.247 - 1.196 v (14)

Stage 2. Mesocrack growth

When the mesocrack is initiated, it first grows under the action of the tractions with the mathe-
matical expectation (12) which can approximately be modelled by the action of a pair of concen-
trated forces (13) applied to the opposite mesocrack faces. Then in the course of its stable growth,
the mesocrack will pass near several regions of high local tensile stresses. It is hypothesised here
that the mesocrack will deviate or branch or sprout new cracks in order to pass through the nearest
region with the maximum possible tensile stresses, Figure 4a. This will produce a tongue compar-
able in size with the correlation radius, p, of the stress fluctuations, which will then be smoothened
by additional growth of other parts of the crack contour, Figure 4b. Thus, a larger approximately
disk-shaped crack will be formed. This will result in adding a new pair of concentrated forces each
time the crack passes through the chosen region. Since at each step the crack chooses only one
region (the probability of two or more regions simultaneously happening on the crack path is
neglected), the total number of concentrated forces will be proportional to the crack size.

The values of the concentrated forces can be computed from (13) if the stress fluctuations are
known. By assumption, each step in the mesocrack propagation involves choosing the region with
maximum fluctuation (the region area is ~p?) from the vicinity of the current crack contour (the total
area of 27rp). This corresponds to choosing a maximum from m~27zr/p normally distributed
random stress disturbances, Ac,, ..., Ac,, which can be assumed independent because they belong to
the areas more than the correlation radius apart from each other.



Suppose the mesocrack radius is sufficiently large as compared to the average correlation radius, p.
Then m is large. It is known (e.g., David, 1970) that the random variable

_In(Inm) + In4r

2Inm)""*(AGnaB(0)* = I(m)), where I(m) = /2In
(2Inm)""(A 0y, B(0) (m)), where I(m) m Wit

(15)

has asymptotically, for large m, the distribution function A;(x) = exp(-exp(-x)). Hence, the mathe-

matical expectation of the maximum stress, Ao, will have the form

_In(Inm) + Indn

ACy = l(m) = J2Inm 16
(40 2T 1o
Then, using (16) and keeping only the leading asymptotic term, one has

E(0(0)(max)) — {0) ~ ¥2B(0)In27r/p 17)

This value should now be used in (14) instead of o(0) — <o>.

For the sake of simplicity, the mesocrack will be modelled by a disk-like crack loaded by the
uniform load <o> and additional tractions modelling the concentrated forces, Figure 4c. Since only
one pair of forces is added at each step, the average magnitude of the additional tractions acting at
the new surface, 27r - (p/2), will be F/ mpr. At each step from all 2ar/ p regions at the crack perimeter
only the one with the maximum stress is chosen. Hence the tractions are (kis given by (14)):

F 2
q(r) = ”—‘;;’,Hr) =% /21“7” (18)

Crack growth —\

Region of ; / r
p maximum !
tensile ! R

stress

\‘ Area from which the

region of maximum
tensile stress is chosen

New crack
contour

(a) (b) (©)

Fig. 4. Mechanism of mesocrack growth: (a) first the crack grows towards the region with maximum
tensile stress; (b) other parts of the crack grow to smoothen the shape; (c) the model.

Because the logarithmic dependence (18) is weak, F(r) can be approximated by its value for r = R.
Then, by employing the solution for a disk-like crack loaded by concentrated forces of unit intensity
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distributed over a circumference of radius r (e.g., Tada, et al., 1985) and integrating it from 0 to R
with the weight F(R)/ pr, one obtains the average stress intensity factor.

The proposed usage of the average stress intensity factor needs some comments. Indeed, it is
conventional to consider criteria of crack growth in terms of maximum values of the stress intensity
factors. One should keep in mind though that this corresponds to 2-D cracks, in which case the end
with the higher values of the stress intensity factors may be the first to satisfy the chosen criterion
and hence ensure the crack growth.

For the stable growth of real 3-D cracks the situation is however different. Suppose, the criterion of
crack growth gets satisfied at a certain point of the crack contour (point A at Figure 5a). Then a new
surface will be produced in a vicinity of that point, Figure 5b. Because of the assumed stable
character of the crack growth this new surface will remain to be a small portion of the total crack
surface contributing little to the overall crack extension. In order to produce a noticeable crack
extension, the criterion should get satisfied at a considerable part of the crack contour, which is not
attainable if the criterion is formulated in terms of maximum stress intensity factors.

(b)

Crack

Fig.5.  Stable crack growth according to conventional criteria involving maximum values of stress
intensity factors: (a) the growth criterion is first satisfied at a point (point A) of the contour;
(b) the possible crack extension near that point contributes little to the crack extension.

A simple approximation which could take into account the requirement that the criterion of crack
growth is satisfied at a considerable part of the crack contour would be to formulate the criterion in
terms of the stress intensity factors averaged over the crack circumference. A further simplification
would be to replace this spatial averaging with the averaging over realisations (mathematical
expectation) of the random stress field (since the problem of stress concentration is linear, this
simplification can be justified by assuming the ergodicity of the random stress field which is the
equivalence between the spatial averaging and averaging over realisations).

As a result, the equation for determining the critical crack radius, R,, (the radius corresponding to
the onset of unstable crack growth found from the condition d<K;>/dR = 0) will have the form:

_ F(R) I - -
<K1> - pﬁ—ﬁ"'z(d) R/”chr 2p<o.>1 (KI> KIc (19)
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The criterion of unstable crack growth assumes the form:

8(0)F(R.,)

_ 2
7p = KIc (20)

where K|_is the fracture toughness of the matrix between the mesocracks.

This approximation also allows calculating the volume of crack opening, i.e. the crack contribution
to dilatancy. The calculations can also be done by integrating the corresponding solution from Tada,
et al., (1985) with the weight F(R)/ mpr.

2
—— v[F(R)R
p

i + §<6>R3} @1)

where yand v are the shear modulus and Poisson’s ratio of the material respectively.

Dilatancy
By introducing

A = R/R (22)

and neglecting the weak dependence (18) of F upon R, the law of the mesocrack growth (19), (20)

can be expressed as follows

1 _ np
Hrlh=Ke /Z_F e (23)

Substituting (18) and then (14) into the above equation gives

1 _ K [ mp

N ARG 24)
where
(2-v)¥(v)JI(v) -R 2 (2-v)(3+5v)
ko(R) = 21n v Jw k= 22T 0RO T ID)
oK) 27(1 - v)(1+v) (](v)a)d ok 5227(1 - v9)(1 + ) (25)

w = Na® is the concentration of initial cracks, N is the number of cracks per unit volume.

Since A=1whenp=p,_,

_ Kay [ 7p
Pa = —5 [m‘l (26)

The appropriate solution of (24) can then be expressed in the form

2

- G- )
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Here the load of the beginning of unstable mesocrack propagation, p,,, can be interpreted as the
uniaxial compressive strength.
Using (21) and taking into account that the inelastic part of the radial strain related to the mesocrack
opening (dilatancy, e.g., Brace ef al., 1966) is equal to Ag, = MV, where V is the volume of mesocrack
opening (because the mesocracks are oriented parallel to the direction of load, their opening solely
contributes to the radial strain, ¢,) and M is the number of mesocracks per unit volume, one has

A, pAB3+24)

= 28
Al SPer (8)

where

max 5(1 - U)ngus
AL = Mot 29
TR (29)

It can be observed that in its dimensionless form (27), (28) the relationship between dilatancy and
the magnitude of compressive load is universal; it does not depend on parameters kj and k;
reflecting the particular type of the random stress field generators. Hence, it is possible to verify the
formulae (27), (28) directly against experimental data without referring to a particular model of
wing cracks. For this purpose experiments by Sano et al. (1981) on four cylindrical samples of
Oshima granite of the height of 11.5 cm and diameter 4.425 cm will be used.

Dilatancy, i.e. the additional volumetric strain (or in this case, the additional radial strain, since the
dependencies axial strain vs. load were almost linear) produced by the opening of the mesocracks is
determined as the difference between the full measured radial strain and the radial strain extra-
polated from the preceding region of linear deformation (region IT according to Brace et al., 1966).
The end of this region, ie the stress of the beginning of dilatancy, o, has been used as the only
matching parameter. Also, for Sample 514, Figure 9, the final (before failure) value of radial strain
was unrealistically high, which probably indicated a possibility of an experimental error. Therefore

max

for this sample the maximum value of dilatancy, & was used as another matching parameter.
This explains much better correspondence between experimental and theoretical data for Sample 514.
Parts (a) in Figures 6-9 show the extrapolation of the region of linear deformation, parts (b) show
comparison between the formulae (27), (28) (solid lines) and the normalised experimental data (data
points). It is seen that the correspondence is quite good and holds for a wide range of loading rates.
Moreover, the determined stresses of the beginning of dilatancy, o,, vary only by about 10% for
different samples.

A remark should be made here. A previously proposed model (Dyskin et al., 1991; Germanovich et
al., 1993) based on the assumption of extensive wing crack growth which was not confirmed by
subsequent experiments (eg, Dyskin et al., 1994a, b) showed good correspondence to the experimen-
tal data only after involving the second matching parameter, £, for all samples (the indication on
this, second matching parameter was erroneously missing from the paper by Germanovich et al.,
1994a). The comparison between the new model and the previous one is presented by (Dyskin,
1997; the formula for dilatancy proposed there contains a misprint; the plot is correct).
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Fig. 6. Experiments by Sano et al., (1981) on Oshima granite for Sample 511 (loading rate was
4.27 x10°7° s7): (a) - extrapolation of Region II; (b) - comparison between experimental (dots) and
theoretical (line) data for dilatancy; o, = 0.675p,,.
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Fig. 7. Experiments by Sano et al., (1981) on Oshima granite for Sample 512 (loading rate was
4.14 x10°° 57): (a) - extrapolation of Region II; (b) - comparison between experimental (dots) and
theoretical (line) data for dilatancy; o, = 0.65p,,.
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Fig.8.  Experiments by Sano et al., (1981) on Oshima granite for Sample 513 (loading rate was
3.68 x 107 s™\): (a) - extrapolation of Region II; (b) - comparison between experimental (dots) and

theoretical (line) data for dilatancy; o, = 0.63p,,.
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Fig.9.  Experiments by Sano et al., (1981) on Oshima granite for Sample 514 (loading rate was
3.48 x 107 s™): (a) - extrapolation of Region II; (b) - comparison between experimental (dots) and
theoretical (line) data for dilatancy; 0,=0.6p,,.

Stage 3. Failure

The mesocracks grow stably until the size of the largest mesocrack(s) becomes high enough to
enable the background stress to make them grow unstably. This constitutes the beginning of failure.
It is not possible at the moment to determine how the unstable phase of mesocrack will proceed or
which failure mode will take place (see Dyskin et al., 1996b, for possible mechanisms of splitting
and shear failure). Here failure will be associated with the unstable mesocrack propagation, the

corresponding load magnitude being taken as the uniaxial compressive strength.



From (19), (26) the criterion of mesocrack growth can be found

ko(R)a R
42k =] = K 30
P[](v) ,—n_p + 2K ﬂ} I (30)

From here the critical radius, R, at which the mesocrack starts growing unstably and the corre-
sponding critical load, the uniaxial compressive strength, p_, are found numerically, Figure 10.
Depending on the concentration w of initial cracks the critical radius can exceed the radius of pre-
existing crack 1040 times (Figure 10a) which corresponds to the observations in Chelmsford
granite samples (Peng and Johnson, 1972) showing that the initial cracks grow up to 20 times.

R, (@) Per (b)
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20
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Fig. 10.  The critical mesocrack radius (a) and the uniaxial compressive strength (b) vs. the concentration

of initial cracks.

The compressive strength shown in Figure 10b is normalised by macroscopic tensile strength
determined by unstable growth of a disk-like crack of radius a oriented perpendicularly to the ten-
sile load o, = (1/2)K;(m/a)"/?. It is seen that for low concentrations of wing cracks the compressive
strength may exceed the tensile one by an order of magnitude and is generally within the range
(3-10) which is typical for brittle materials (e.g., Paul, 1968).

Conclusions

Failure of heterogeneous materials in uniaxial compression is a three stage process in which the
formation and growth of wing cracks is only the first stage. The wing cracks cannot grow exten-
sively to cause failure, so their role is in inducing additional self-equilibrating random stress field.
Its normal components acting in the directions perpendicular to the compression direction produce,
at the places where they are tensile, new cracks, so-called mesocracks. This starts the second stage of
the failure process.

As a mesocrack grows it tends to deviate its path to meet the regions with higher possible local
tension. As a result, it grows further under the action of concentrated forces distributed randomly
and uniformly with respect to the mesocrack radius. The mesocrack also tends to avoid the wing

cracks such that the stress field driving the crack is the stress outside the excluded volumes
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surrounding the wing cracks. This outside stress has a positive (tensile) mean, which turns the sta-
ble mesocrack growth into an unstable one and causes failure.

The growth and opening of mesocracks result in a specific dependence between dilatancy, i.e.
inelastic increase of the sample volume, and the applied compressive stress. This dependence has a
universal nature independent of the particular model of wing cracks. It corresponds well to the data
of uniaxial compressive tests on 4 samples of Oshima granite (Sano et al., 1981) despite markedly
different loading rates and resulted strengths.

When mesocracks become large, the background tensile stress makes their growth unstable, which
constitutes the last stage, ultimate failure. The load that corresponds to the unstable mesocrack
growth can be identified with the uniaxial compressive strength. It is shown that for low concen-
trations of wing cracks the compressive strength may exceed the tensile one by an order of

magnitude and is generally within the range (3-10) typical for brittle materials.
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