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A gradient plasticity theory is proposed, which includes dependence of the yield function on the
Laplacian of an invariant plastic strain measure. The theory preserves well-posedness of the
governing equations in the presence of strain softening and prevents the pathological mesh
sensitivity of numerical results. An internal length scale incorporated in the theory determines the
size of localization bands. Adopting a weak satisfaction of the yield condition, mixed finite elements
are developed, in which plastic strains are discretized in addition to the standard discretization of the
displacements. A gradient-dependent Drucker-Prager yield function is used to solve a two-
dimensional problem of shear slip in a soil mass. A gradient-dependent Rankine failure function is
used in continuum modelling of two concrete fracture experiments. The regularizing effect of the

gradient dependence is demonstrated.
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Introduction

Conventional constitutive models with strain softening exhibit a pathological mesh sensitivity of
numerical results. The size of the localization zone is completely determined by the discretization
and the direction of the localization band may be biased by the mesh lines. The reason for this
behaviour is the fact, that the boundary value problem easily ceases to be well-posed at the onset of
strain softening, which is a material instability. The standard continuum equations then predict
localization of deformation in a set of measure zero (a line in 2D configurations) and a finite element
solution attempts to reproduce this result by a localization band that is one or two elements wide in
decohesion or shear slip problems, respectively.

Various approaches have been suggested to remove the ill-posedness of the governing equations,
cf. Willam et al. (1992), Sluys (1992), de Borst et al. (1993). In this paper a higher-order continuum
approach called gradient plasticity is used as a regularization method, cf. Aifantis (1984), Zbib et al.
(1988), Miihlhaus et al. (1991), Vardoulakis et al. (1991), de Borst et al. (1992). In this approach the
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yield function depends on the second order spatial derivatives of an invariant plastic strain meas-
ure. This dependence preserves ellipticity of the equilibrium equations during localization and
introduces an internal length scale defining the width of the localization band. From the physical
viewpoint, we can associate the higher-order gradients in the macroscopic constitutive model with
the nonlocal interaction between microstructural deformation carriers.

Due to the gradient dependence of the yield function the consistency condition, which governs the
plastic flow, is a partial differential equation. Therefore the determination of the plastic multiplier is
not as simple as in classical plasticity. It has been proposed, Miihlhaus et al. (1991), de Borst et al.
(1992), to satisfy the consistency equation in a distributed sense and to discretize the plastic strain
field in addition to the usual discretization of the displacements. A general formulation and a
solution algorithm for the gradient-dependent plasticity theory have been presented by de Borst et
al. (1992). This paper presents the possible finite element formulations of the problem together with
some applications to soil instability and concrete fracture problems in two dimensions, cf. Pamin
(1994).

In this paper we limit the consideration to static problems with a monotonic loading and small
deformations of the analyzed configurations. We employ a deterministic description of an isotropic
and homogeneous continuum. The theory of gradient-dependent plasticity is summarized in
Section 2 together with the incremental equations, which are the starting point of the derivation of
different finite elements, presented in Section 3.

The performance of the gradient plasticity theory and some finite elements are investigated in
Sections 4-5. Simulations of a slope stability problem in a soil mass under plane strain conditions are
described in Section 4 using the gradient-dependent Drucker-Prager yield function with linear
cohesion softening. Fracture of a Single-Edge-Notched (SEN) beam, Schlangen (1993), and a
Double-Edge-Notched (DEN) specimen, Nooru-Mohamed (1992), is numerically predicted in
Section 5 by means of the Rankine failure function with a nonlinear gradient-dependent softening

rule. Section 6 includes some final remarks.

Gradient-dependent plasticity

Rate boundary value problem
Firstly, we summarize the rate boundary value problem of gradient plasticity, cf. de Borst et al. (1992),
Pamin (1994). We introduce the displacement vector u = (u,, Uy, u,), the strain tensor in a vector form

O,

22/ ny/

€= (& &y £, Yy Yy %) and the stress tensor in a vector form 0=(a,, 0,

assumption of small deformations and static loading we have the following equations for an elasto-

o,, 0, Under the

plastic body occupying a volume V:

L's+b = 0, 1)
&= Lu, (2)
&6 = D°(£-Am) (3)

where superimposed dots denote the derivative with respect to time and the superscript T is the

transpose symbol. In the above equations L is a differential operator matrix, b is a body-force vector



and D¢ is the elastic stiffness matrix. Eq. (3) contains the definition of the plastic strain-rate vector,

called the flow rule:

& = lm, m=g—§ 4)

in which 2 is a plastic multiplier and m defines the direction of the plastic flow. The vector m may
be derived from a plastic potential function G.

The gradient dependence is included solely in the definition of the yield function F
F=F (o, K VK, (5)

in which xis an invariant plastic strain measure (the hardening parameter). Together with eqs
(1)~(3 ) the Kuhn-Tucker conditions

A20, F<0, AF= 0 (6)

must be fulfilled. To complete the rate boundary value problem we must specify the standard static
and kinematic boundary conditions on complementary parts of the body surface S as well as the
additional conditions for the plastic multiplier field on the boundary of the plastic part of the body
V. They can be derived from the variational principle for gradient plasticity by Miihlhaus et al.
(1992) and have the form:

SA=0or (Vi) v, =0, )

where § denotes a variation of a quantity and v, denotes the outward normal to the elastic-plastic
boundary.
The gradient dependence of the yield function makes the plastic consistency condition F = 0

become a differential equation:

(Z) o Lier 2= 0. ®)

Ik Vi

We introduce the gradient of the yield function n:

OF
n=5, ©)

the (variable) hardening modulus h: *
2 Kk OF
h(x Vk) _~/7LE(. (10)
and the gradient influence variable g:
k oF
Aovix

8(Kx) = (11)

which is assumed to be a function of x only. We limit our consideration to the theories of plastic

flow, for which we can write that
k= ni, (12)
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with 77 constant and positive. This relation is broad enough to encompass the classical Huber-Mises,
Drucker-Prager and Rankine yield functions with some form of a strain hardening hypothesis.

We can now write eq. (8) in the form:
T 5 2,
no-hA+gVai=0. (13)

For softening the modulus h is negative and the additional variable g is positive. In the simplest case
J1and g are constants (softening is linear). For ¢ = 0 the classical flow theory of plasticity is retrieved.
The consistency condition is then a nonlinear algebraic equation, from which the plastic multiplier
can be determined locally. The problem of solving eq. (13), which is valid in the plastic part of the
body V,, is characteristic for the present theory.

Incremental formulation and algorithm

In this paper we employ a finite element discretization to solve simultaneously the two coupled
equations of equilibrium and plastic consistency. For this purpose a weak satisfaction of the
consistency condition is assumed and the plastic strain field is discretized in addition to the
standard discretization of the displacements, Miihlhaus et al. (1991), de Borst et al. (1992). An
incremental formulation of the boundary value problem gives rise to residual terms, which make a
stress update necessary. In order to derive an incremental-iterative algorithm we require a weak

satisfaction of the equilibrium condition

ISuT(LTGiH+bM)dV =0 (14)
1

and the yield condition

Jsu(am, K, Vi, ) dV =0 (15)
Vl

at the end of iteration j+1 of the current loading step. These conditions lead to the following two
integral equations, cf. Borst et al. (1992), Pamin (1994):

ISSTDE (de—dAim)dV = J.(SuTbh AV + J'auTths - J.SETO'idV (16)
v v S v

and
[62(n"D"de~ (h+ 0D m) di+ gV (D)1 AV = - [ $F (0, &, V') V. (17)
v, Ya

The values of n, m, i and g on the left hand side of eq. (17) are determined at the end of iteration j,
i.e. for the state defined by (o, k;, Vzrci) . Using integration by parts for the last term on the left-hand
side of eq. (17) we obtain

J‘E)L[nTDedeA (h+n'Dm)dA]dV - jg(V&dl)T(le) dv = _jsﬂuf(aiJf K, V'k)dV, (18)
V. V.

Vi 2 A



provided the non-standard boundary conditions

8dA =0 or (VdA)'v, = 0 (19)

are fulfilled on the whole boundary S, of the plastic part of the body. The first condition is delicate
for finite increments, since the elastic-plastic boundary moves when the plastic zone in the body
evolves. During this process the boundary condition 51 = 0 on the momentary elastic-plastic
boundary may be not true and (19), must hold.

In the algorithm we enforce F =0, n = m = 0 and dA = 0 in the elastic part of the body and use the
same mesh for both the equilibrium and failure condition, i.e. integrals over the whole volume V
appear in eqs (15) and (17)/(18). In the residual terms on the right hand side of eqs (16) and (17)/
(18) the stress o, appears. It is determined using the standard elastic predictor-plastic corrector algo-

rithm (backward Euler type) at each integration point which is in a plastic state:
0, = 0,+DAg - ALD"m,, (20)

where 0 is the stress state at the end of the previous (converged) load increment and A denotes a
total increment (from state 0 to iteration j). The values of K and VZKI are also updated using total
increments. It is important to note that a consistent linearization is applied to this algorithm in order
to derive a tangent operator used in the Newton-Raphson iterative procedure, cf. Pamin (1994).
Since the vector m; is known only after the mapping in eq. (20), it is approximated by the gradient

m, calculated for the “trial” stress:

o, = 0,+D°A¢, . (1)

To decide whether an elastic point enters the plastic regime, or whether a plastic point begins elastic

unloading the trial value of the yield function F, is calculated at each integration point:

F, = F(o,5,), (22)

where the gradient-dependent yield strength is determined as follows:

0, = o(K) -8 (k) VA . (23)
An integration point is assumed to be in the plastic state when F, > 0 and in the elastic state when
F < 0. The gradient-dependent yield strength in eq. (23) is composed of two contributions. The
gradient contribution -g (k) VA may be positive or negative. The former case occurs in the middle
of the localization band, giving additional carrying capacity to the gradient-dependent material in
this area (even if  already equals zero, the yield strength G, is still larger than zero). The case of
negative gradient contribution occurs at the elastic-plastic boundary, making it possible for the
localization zone to spread (the elastic elements close to the elastic-plastic boundary have appar-
ently a reduced yield strength). These modifications of the standard yield strength function & (x)
are the algorithmic essence of the gradient regularization.

The dependence of the yield function on the Laplacian of the plastic strain measure is thus essential

for the plastification condition and for the calculation of the non-standard residual forces on the
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right hand side of eqgs (17)/(18). To enable expansion of the plastic zone from the originally imper-
fect zones, the numerical solution must correctly determine a positive value of the Laplacian at the
elastic-plastic boundary. The boundary conditions (19), require the existence of derivatives of A as
nodal degrees of freedom. Therefore C'-continuous interpolation functions are necessary for A
whether eq. (17) or eq. (18) is discretized, Pamin (1994).

Finite elements for gradient plasticity

C'-formulation

In the integral equations (16) and (17)/(18) there appear at most first-order derivatives of the
displacements and second-order derivatives of the plastic multiplier. Therefore, the discretization of
the displacement field u requires C*-continuous interpolation functions N and the discretization of

the plastic multiplier A requires C'-continuous shape functions h:

u=Nai=h"A, @24)

where a is a nodal displacement vector and A denotes a vector of nodal degrees of freedom for the

plastic multiplier field. The strain vector £ can then be written as

€= Ba, (25)

where B = LN according to the linear kinematic relation (2). The gradient of the plastic multiplier
VA and the Laplacian of the plastic multiplier V*2 are then discretized as follows:

Vi=q'A,  V=p'A, (26)

where qT = Vh' and p contains the Laplacians of the interpolation functions in h. Discretizing the
integral equations (16) and (17) using eqs (24)-(26) and requiring that the result holds for all

admissible da and A, one arrives at a nonlinear algebraic set of equations, de Borst et al. (1992):

K,, K| |da | _ |fo+f, ) @7)
K,, K,,||dA £,
with the classical elastic stiffness matrix K,,, the off-diagonal matrices

Te T Ty©
K, = -jB D‘mh"dV, K,, = —J'hn D°BdV, 28)
Vv v

the gradient-dependent matrix

K,, = J' [(h+n"D°m)hh’ - ghp'1dV, (29)
v



the classical external and internal force vectors f, and f,, respectively, and the vector of residual

forces emerging from the weak fulfilment of the yield condition:

£, = [F(0, 2, V'4) hdv. (30)
14

The matrix K, is nonsymmetric due to the gradient dependence even for an associated flow rule.

However, if eq. (18) is used as a point of departure instead of eq. (17) the matrix K, :

K,, = _J‘ [(h+n'D‘m)hh' - gqu] dv 1)
Vv

becomes symmetric for associated plasticity (m = n).

With respect to the non-standard boundary conditions for the plastic multiplier field, we notice that
both boundary conditions (19) are satisfied at the evolving elastic-plastic boundary if C'-continuity
is satisfied. However, the second of the conditions (19) must be enforced on the outer boundary of
the plastic part or, in practice, on the whole surface of the body if the tangent operator in eq. (27)
includes K,, according to eq. (31) or if it does not possess a sufficient rank for elastic elements.

To avoid singularity of the tangent operator for elastic elements the hardening modulus & in eq. (29)
is initially set equal to Young’s modulus E. The rank of submatrix K,, for the elastic elements should
be examined in order to determine the number of integration points and additional boundary
conditions necessary to avoid spurious non-zero modes for the plastic multiplier field. On the other
hand, a high-order integration scheme and too many additional boundary conditions for the 2 field
can lead to an overconstrained plastic flow and have a negative influence on the accuracy of finite

element predictions, cf. Pamin (1994).

C’~formulation
In order to be able to use C’-continuous interpolation functions for the plastic multiplier field, we

introduce new variables ¢,, ¢, :

A oA
%=00 By (32)

and collect them in a vector ¢ = (¢,, ¢,). In this fashion we can write the gradient of the plastic

multiplier as

VA= ¢ (33)

and represent the Laplacian of 1 as

v = 20, 9% _

T
7wty = Ve (34)

where the scalar product of the operator V' and the vector field ¢ denotes the divergence operator.
The result of eq. (34) can be substituted in eq. (17) or (18), but the constraint (33) must be added to
the formulation. We achieve this using the penalty method by means of an additional variational

equation:
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Jk(V?L—q))T[V(M)—éq)]dV =0, (35)
v

where k is a penalty factor. In practical calculations we use k = E*, where E is Young’s modulus.
Using the incremental form of eq. (35) together with eqs (16) and (17) we obtain a set of three

integral equations:

J.SETDe (de-dAm)dV = _,.5uTti+ 1dS - ISequV, )
v § Y

Py

J‘le[nTDedev (h+n'D'm)dA+gV'dgldV = —jmp(a K, Vix)dV, (37)
v 14

where according to eqs (12) and (34) we calculate Vi = nVT¢ and

kj(mv"’ [V (dA) - de]dV - kj&pT [V(dA) —d¢]dV = 0. (38)
v Vv

The above equations are now discretized using C’-continuous interpolation functions. The inter-
polation functions for the displacement field are like in the previous section, but the shape functions
h for the plastic multiplier field in eq. (24), are now C’-continuous. The following interpolation for

the new variables in ¢ is used:

¢ = PO, (39)

where @ contains the nodal values of ¢, and ¢, and P is a matrix of shape functions, similar to N in
eq. (24),. Upon the discretization of eqs (36-38) and the usual argument that the resulting equations
must hold for any admissible a, SA and 6®, we obtain the following set of algebraic equations in a

matrix form:

Kaa Knl 0 00 0 da fe + fa
K, K K| +k[0 K3y Kl [ |dA] = | (40)
0 0 0 0 Kjy K,/ AP 0

where K_, is the classical elastic stiffness matrix, K,, and K, are given in eq. (28), K;, and K, are

defined as

Ky = [(h+n'D'm)hh'dV, K, = -[1gnv'P1aV, (41)
v Vv

and the submatrices with the superscript c in the additional (symmetric) matrix introducing the con-

straint (33) are defined as

K, = [aq'dV, K, = [P'PdV, K;, = [apyav. (42)
1 \4 Vv

The tangent operator in eq. (40) is again nonsymmetric, due to the gradient dependence.



If we substitute the definitions (33) and (34) into eq. (18), instead of into eq. (17), we obtain the weak

form of the yield condition as:

j S2[n'D°de~ (71 + n'D°m)dA] dVAJ‘g&])dcpdV == J SAF (0, k, V') dV, (43)
v v s

in which the derivatives of ¢ appear only on the right-hand side in VZKi. Substitution of eqs (24),,
(25) and (39) gives the second form of the discretized yield condition, which for an associated plastic
flow (m = n) yields a symmetric tangent operator. The additional boundary conditions (19), written

in the form:

8dA =0 or d¢'v, = 0 (44)

must now be fulfilled on the boundary of the plastic part of the body.

We note that for the penalty method of introducing the constraint (33) to be successful the penalty
submatrix K° must be singular, otherwise non-zero ® values are not admitted. To achieve this goal,
reduced numerical integration should be used, cf. Zienkiewicz et al. (1982). Since the penalty
constraint assures satisfaction of eq. (33) only in the sampling points, the best results are expected if
uniformly reduced integration is employed for all the matrices. If eq. (33) is not true at a Gauss
point, the stress computation gives a stress point that is not located on the yield surface and

convergence is violated.

Requirements for the elements

Fig. 1 presents three examples of gradient plasticity elements. Element R32_G employs quadratic
serendipity interpolation of displacements, bi-hermitian shape functions for the plastic strain field
and 2 x 2 Gauss integration. This element is the most robust of gradient plasticity elements, cf.
Pamin (1994), due to the special qualities of the Gauss integration stations, cf. Barlow (1976), at
which higher-order accuracy of the derivatives of the interpolated fields is obtained and the yield
condition is satisfied exactly upon convergence. As alluded to in the preceding, the matrix K, for
elastic elements requires additional constraints, which can be introduced by extra boundary
conditions for derivatives of A. For an arbitrary assembly the conditions A, =0 and A, =0 on the
whole model boundary supply the required number of constraints. Element Q45_C is an example of
a quadrilateral penalty-enhanced C’-continuous element. With 2 x 2 integration it converges
perfectly, but it possesses zero-energy modes for u and also spurious modes for A. In an arbitrary
mesh the boundary conditions for ¢, or @, are not sufficient to assure the correct rank of the K,
matrix and additional conditions for A itself on at least a part of the boundary are necessary to
obtain a correct solution. The triangular element T21_G has quadratic interpolation of displace-
ments and cubic interpolation of A, which is based on a non-conforming plate bending triangle, cf.
Zienkiewicz et al. (1991) . The element has A, and A, degrees of freedom, but it does not fulfil the
continuity requirements for A, on its boundary. Integration with 3 Gauss points is used, but return
mapping to the inside of the yield locus is observed and stress oscillations are found. Additional
boundary conditions A, = 0 are necessary to prevent the existence of non-zero A modes in elastic
elements. While testing different finite elements belonging to the described classes it was observed,

cf. Pamin (1994), that for robustness the elements should fulfil some additional conditions:
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— The balance of interpolations for displacements u and plastic multiplier A. The best agreement is
found between quadratic shape functions for u and cubic hermitian polynomials for 1 or

quadratic shape functions for A and its derivatives.

7 6 5
8 4
R32_G
1 2 3
y © ac,ay, A A A Ay
L 0 ay,ay,A A (D, Ay (D)

° ay,ay
Fig. 1. Gradient plasticity elements: C'-continuous rectangle, C’-continuous quadrilateral and non-

conforming triangle.

— The existence of a suitable integration quadrature. A sufficient number of integration points is
necessary to prevent zero-energy modes for u and A fields without introducing too many
constraints and the sampling positions should be optimal for accuracy.

— The availability of additional boundary conditions for the 2 field, necessary in combination with a
symmetric tangent operator and helpful in removing spurious modes for the plastic multiplier field.

The above discretization requirements favour the use of rectangular/ quadrilateral elements with

reduced integration. In fact, among the analyzed two-dimensional elements only the eight-noded

serendipity / hermitian element R32_G fulfils all the requirements. Among the implemented
triangular elements, the six-noded quadratic/ non-conforming element T21_G with 3 integration

points performs the best.

Application to geomechanics

Drucker-Prager gradient plasticity

The Drucker-Prager nonassociated plasticity model includes the hydrostatic stress dependence of
the yield function and the non-normality of the plastic flow, which are characteristic for the
behaviour of geomaterials. Assuming that the hardening/softening behaviour is limited to the
cohesion of the material, the Drucker-Prager yield function for gradient-dependent plasticity can be

written as follows:
F= [3],+op-Pe,(x V), (45)

where p = }(0,, + 0,, + 0,,) is the hydrostatic pressure, aand f are functions of the internal

friction angle ¢



65sin ¢
3 -sing’

_ 6cos¢
b=3= sing’ (46)

and ¢, is a gradient dependent measure of the cohesion. For non-associated plasticity we define the

plastic potential function in a similar way:
G = J3],+ap, 47)

where 0. is a function of the dilatancy angle y similar to the definition of o in eq. (46). To determine

the value of the constant n relating i to A according to eq. (12) we use the strain-hardening

hypothesis:
o \12
o= ()" (48)

Substitution of the plastic strain rate vector &’ = Am into eq. (48) gives after some manipulations,
cf. Pamin (1994):

. /2
i = 1(1+§a2)1 , (49)

sothat n = ,/1+ gﬁcz. According to the definitions in eqs (10) and (11) we have:

Je Je
= np== = -np—=& 50
h=mnp=2 8 nﬁavzx’ (50)
and for linear softening ¢, can be written as:
g, = cy+irc——g—vz;<, (51)

ng- np

with constant 1 and ¢. An important advantage of the Drucker-Prager yield function is its smooth-
ness, since the presence of singular edges on the yield surface poses a difficulty for the gradient
plasticity algorithm. In fact, the Drucker-Prager yield surface also possesses a vertex at the cross
section with the hydrostatic axis J, = 0. From eq. (45) we can calculate that at the vertex p = ¢, cote.
It is assumed here that the stress points in large triaxial tension, which would fall into the vertex

regime p > ¢, cot¢, are not admitted.

Slope stability problem

Fig. 2 shows the configuration used for the analysis of stability of a soil mass under an increasing
gravity load. It is a slope with an inclination of 45°, cf. Ortiz et al. (1987), for which the lower edge is
fixed and the right edge is supported in the horizontal direction.

The material data are based on Ortiz et al. (1987): Young’s modulus E =2 - 10° N /m? Poisson’s ratio
v=0.25, initial cohesion ¢, = 2000 N/m? friction angle ¢ = 20°, dilatancy angle y = 10°. The soil
density p = 1000 kg/m?® is adopted. The linear softening rate for cohesion is dc/9x = -0.01G. From
eq. (49) we obtain 1 = k/A~1.015 and the softening modulus equals /1 = -0.060G according to
eq. (50),. The internal length scale [ = 0.04 m is adopted (the gradient constant is ¢ = 2752 N). In this
example we employ two crossed-diagonal meshes with 12 x 12 x 4 and 24 x 24 x 4 six-noded plane
strain triangles T21EG with 3 integration points. Along all the boundaries the normal derivatives of
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the plastic multiplier A, are set to zero. The calculations are performed under arc-length or single
displacement control. In the latter case the vertical displacement of point A is the controlling

parameter (cf. Fig. 2).

. 1.0 . 1.0

Fig. 2. Inclined embankment model (dimensions in m).

In addition to the linear softening case we consider the ideal plasticity case dc/dx = 0. In the
gradient plasticity calculations the coefficient g = 2752 N is used. Fig. 3 presents the load-displace-
ment diagrams. With the increase of the self-weight (at the load factor value 1.8) the compressed soil
mass starts to plastify at the bottom of the embankment. The plastic zone then gradually expands

upwards and at the peak load a shear band forms, along which a part of the soil mass slides down.

load factor

g=2752N
84 3¢/ax =0
g=0
64
o g=2752N
=0 24x24x4
g=2752N
24 12x12x4
O T T T T

0 05 1o 15 20 25 3.0
x10™* v, [m]

Fig. 3. Classical versus gradient plasticity solutions for the slope stability problem in terms of gravity load

factor and vertical displacement at point A.

Calculations for the classical softening plasticity case fail soon after the formation of the shear band.
The gradient plasticity algorithm gives a more stable behaviour, the peak load is higher and the
response is more ductile. The results for both analyzed meshes are close, but not the same (Fig. 3)
since the non-conforming triangular elements T21EG does not fulfil the robustness requirements.

Fig. 4 compares the contour plots of the equivalent plastic strain obtained for the two analyzed



discretizations. The expected smoothing effect is observed and the curved shear band has the width
of several elements. The strains are slightly more localized for the fine mesh, but the shear band

width is well reproduced.

033 067 1 . . 0.67

Fig. 4. Contour plots of equivalent plastic strain for two discretizations (1 = 0.04 m).

For the ideal plasticity case the gradient dependence produces an increased load carrying capacity
(Fig. 3) and a broader shear band is observed. In fact, the relation between the coefficient g, which
scales the gradient influence, and the internal length ! (hence also the shear band width) is not
determined in this case, which corresponds to the gradual increase of the shear band width,

observed in the incremental solution.

Application to concrete fracture

Vertex-enhanced Rankine gradient plasticity

The maximum principal stress criterion, adopted as a condition of continuum fracture, is
formulated here for the plane stress case. A similar form of the yield criterion can be assumed for
plane strain situations provided we assure that ¢, = o, < g, (or 0,), which means that cracking is
admitted only in planes parallel to the z-axis. The Rankine failure function can be written in the

following form:

F=o0,-5 (5 V), (52)

where o, is the maximum principal stress and g, is the gradient dependent fracture strength. For

this fracture criterion the following definition of the equivalent inelastic strain rate is proposed:
k=&, (53)

where & is the maximum principal inelastic strain rate. Substitution of the associated flow rule

& = Jn into eq. (53) gives after some manipulations, cf. Pamin (1994):

&=2. (54)

We assume that the Rankine yield criterion is activated only when o, and & are positive, so that we

obtain the equivalence the inelastic strain measure and the plastic multiplier i = A.
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The Rankine yield surface for plane stress problems possesses a vertex o, = (0,0, 0) in the (o, o,
0,,) space. For classical plasticity algorithms the presence of vertices in yield functions involves only
some extra difficulties, cf. de Borst (1987), Simo et al. (1988). Each smooth part of the yield function
can first be redefined as a separate function (for instance F;, and F,,)) and then the Koiter’s generali-
zation can be applied, Koiter (1953).

The situation is different if, as in gradient plasticity algorithm, the plastic multiplier is discretized
and the yield condition is fulfilled in a weak sense. A possible, but expensive solution (following the
Koiter’s strategy) is to include the discretization of two plastic multipliers A, and 4, in the element
formulation and penalize the latter one to zero, unless the vertex regime is entered. The second
approach, summarized below, is to apply a smooth approximation of the Rankine yield function, cf.
Pamin (1994).

For vertex smoothing we develop a family of yield functions in the two-dimensional principal stress

space, tangential to the Rankine function in the points (0, 5) and (&, 0) :

m. l/m

F.= (of+0,) -0, =0. (55)

In fact, these yield surfaces are not fully compatible with the Rankine yield surface in the (o, 0,, 0,))
space, a growing incompatibility exists along the lines o, = 0 and 0, = 0 as ¢, increases. However,
assuming that the enhanced Rankine criterion will be active for stress states dominated by tension
and not by shear, the yield function F, according to eq. (55) is adopted henceforth. A modified
strain-hardening hypothesis:

k= [+ @7 (56)

assures the equivalence the plastic strain measure and the plastic multiplier k = A.

We employ a nonlinear softening rule according to eq. (23):
g, (V%) = 6(K) -g(x) V'K, 57)

in which @ () is a given softening rule (e.g. as in Fig. 5), (x) is a given gradient influence function
and we assume that @, > 0. We can generalize the relation between the variable g, the classical
hardening modulus @ and an internal length scale [, found for the one-dimensional analytical

solution and linear softening, de Borst et al. (1992), to the case of nonlinear softening

g (1) = -1’0’ (1), (58)

with I constant, and obtain for the gradient-dependent softening law:

o, (15 Vi) = o(x) - 18 (1) VK, (59)

which together with the exponential softening rule in Fig. 5 reflects the decrease of the gradient
influence with the increase of the accumulated plastic (inelastic) strain, corresponding to the
gradual failure of microstructural deformation carriers during a progressive material damage, van
Mier (1991).
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Fig. 5. Nonlinear softening rule for concrete Mode-I fracture according to Hordijk (1991).

Single-edge-notched beam
The single-edge-notched beam in Fig. 6 has been investigated by Schlangen (1993) experimentally
and numerically using a lattice model. The beam has a 5 mm wide and 20 mm deep notch on the

symmetry axis at the top and is subjected to an antisymmetric loading.

P/11
20 180 180 20
T L

Fig.v 6. Single-edge-notched beam with discretization (dimensions in mm).

The material data for concrete, based on experimental values, cf. Schlangen (1993), are as follows:

Young's modulus E = 35000 N/mm?, tensile strength f, = 3.00 N/mm? fracture energy G, = 0.10 N/

mm. To preserve the robustness of the Rankine gradient plasticity algorithm with vertex smoothing

the Poisson ratio equal to zero is taken, which, for the plane stress configuration, involves a negligi-

ble deviation of results with respect to the real case with v =0.2. The beam is analyzed numerically
under indirect arc length control.

Since fracture takes place in the middle of the beam, the element mesh (Fig. 6) is composed of the

following parts:

— the middle zone (115 x 100 mm) with a “real” notch, discretized using eight-noded gradient
plasticity elements R32MG; the additional boundary conditions for the plastic multiplier A are
imposed on the boundaries of this zone,

- two coarse mesh zones of standard eight-noded elements on both sides of the beam,

- the loading plates discretized with standard quadrilateral and triangular elements having ten
times higher stiffness E = 350000 N/ mm?.
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The nonlinear softening rule and the decreasing gradient influence according to eq. (59) are used.
In the first simulation an internal length scale I = 3 mm (x, = 9.09 - 10?) is assumed, then I =2 mm
(x, = 0.0136) is taken. In the third simulation the fracture energy is doubled to observe its influence
on the peak load and ductility of the response (I =3 mm is adopted). To study the mesh-sensitivity
and to check whether the curved crack obtained in experiments can be reproduced, the mesh in the
central area (50 X 100 mm) is refined uniformly in the fourth simulation.

Fig. 7 shows load-crackmouth sliding displacement (CMSD) diagrams for the experiment of
Schlangen (1993) and the four cases. The global behaviour of the beam is reproduced satisfactorily
with the Rankine gradient plasticity model, Mode-I crack opening is observed and the simulation
results are close to the experiment. For G, = 0.1 N/mm three curves are shown: for the two meshes
with [ = 2 mm and for the coarser mesh with / = 3 mm. The load-deformation diagram is governed
by the value of the fracture energy and it is almost not affected by either mesh refinement or the
change of the internal length scale. Fig. 8 presents the expected regularization effect: the fracture is
distributed over a band having a width determined by the internal length scale. The equal value
contours for the equivalent fracture strain are similar for the two used meshes. At the same time the
experimental propagation of the primary crack along a curved line is not reproduced.

While the present solution algorithm for gradient plasticity performs very well for relatively
smooth strain/stress fields, the return mapping determined by the nodal plastic multiplier variables
is not sufficiently accurate in case of stress concentrations (e.g. at notches) and sudden changes of
the plastic flow direction (e.g. when the vertex regime of the Rankine criterion is entered).

This difficulty, which is a consequence of the weak fulfilment of the yield condition, causes con-

vergence problems especially in the peak load regime.

Force [kN]

40+
G;=0.2N/mm

304

Experiment
204

0 004 008 012 016 02
CMSD [mm]

Fig. 7. Computed and experimentally obtained load-CMSD diagrams.
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Fig. 8. Contour plots of equivalent fracture strain in the central part of the SEN beam at the final load level:
1= 2 mm (left and middle) and I = 3 mm (right).

Double-edge-notched specimen

Fig. 9 shows the configuration of a mixed-mode concrete fracture test, analyzed experimentally by

Nooru-Mohamed (1992). The double-edge-notched specimen was placed in a special loading frame
that allowed for the analysis of various loading paths of combined shear and tension under force or

deformation control.

A’ B

65 4

R s

.25 | 150 .25

Fig. 9. Double-edge-notched concrete specimen with discretization (dimensions in mm).
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Three specimen sizes (L x L) were used in the experiments: 200 x 200, 100 x 100, 50 x 50 mm.

The sizes of symmetrical notches were 25 x 5, 12.5 x 5 and 6.25 x 5 mm, respectively, and the
specimen thickness was for all cases t = 50 mm. The specimen was supported at the bottom and
along the right-hand side below the notch. The shear force P, was applied through the frame above
the notch along the left-hand side of the specimen and the tensile force P was applied at the top.
The frames were glued to the specimen. The relative shear deformation between the upper and
lower half of the specimen §, was measured at the points S and " on both sides and the relative
normal deformation in the fracture zone § was measured between the points A and A” as well as B
and B’ and averaged. Owing to the servo-controlled system the loading could also be controlled by
the deformations 9, and &.

We have analyzed two of the loading paths considered by Nooru-Mohamed (1992) using the
Rankine gradient dependent plasticity model. In the first series of simulations the largest specimen
is used. The shear force is applied under force control and then kept constant while the normal
loading is imposed under deformation control of & (path 4 from the experiment). In the second
series all three sizes are analyzed to verify the size effect, which is a result of the release of the stored
elastic energy during fracture. To obtain a monotonic increase of loading, the shear and tension are
applied simultaneously under the control of the horizontal and vertical displacements p, and p with
the condition p = p,. It is noted that this deformation control is only a numerically convenient
approximation of the real case, since in the experiment (path 6) 3, and & were used to control the
loading. The material data used in numerical simulations are as follows: Young's modulus

E = 30000 N/mm ? Poisson’s ratio v = 0.0, tensile strength f, = 0.8 f,,, = 3.00 N/ mm?, fracture energy
G, =0.10 N/mm. The same nonlinear softening rule as in the previous section is employed. Unless
stated otherwise, the internal length scale I = 2 mm (x, = 0.0136) is assumed.

Fig. 9 shows the geometry of the specimen 200 X 200 mm and the finite element mesh used in the
calculations. The central zone of refined mesh (50 <y < 150) is composed of eight-noded gradient
plasticity elements R32MG and the coarse mesh zones at the top and at the bottom are discretized
with standard serendipity elements. Additional boundary conditions for the plastic multiplier field
are enforced on the boundaries of the fine mesh and the respective displacements are tied on the
remeshing lines to preserve the displacement continuity.

Fig. 10 shows the experimentally determined and numerically simulated relations between the
tensile load P and the normal displacement 8. The calculated maximum shear load P;,,,, =29.7 kN
islarger than the experimental value (about 27.5 kN) and the ultimate carrying capacity under
subsequent tension is even stronger overestimated, which is attributed to the stress locking in the
notch area and overestimation of the cracking stress in the presence of the lateral compression.

On the other hand, the Rankine gradient plasticity model reproduces correctly the character of the

experimental curves and is close to experiments for progressive softening.

The simulated fracture process zones are compared in Fig. 11 with the average experimental crack
positions, i.e. an average of the experimental crack locations at the front and back of the specimen
are plotted. The agreement is reasonable and no bias of the mesh lines is found as was the case in
the smeared cracking simulations, cf. Nooru-Mohamed (1992). It is noted that for the case with P,
the central zone of gradient plasticity elements had to be extended over the area 40 <y <160 in order

to admit the inclined “crack” propagation. For the case P, = 5 kN two fracture zones developing



from the notches finally join, for the other cases the width of the compressive strut is estimated
correctly. The width of the fracture zones corresponds well to the assumed value w = 27l =~ 12.6 mm.

However, as for the SEN beam in the previous section, the curved character of the cracks cannot be
simulated.
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Fig. 11. Contour plots of equivalent fracture strain at the final tensile load level for the three lateral
confining load levels (from the top P, =5, 10, P

B um.\-)‘
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In the second series of calculations we have applied simultaneously equal shear and tensile
deformation (path 6). Fig. 12 shows the calculated diagrams for the relation between the nominal
stress (P/(tLy)), where Ly is the load carrying length equal to 150, 75 and 37.5 mm for the three
respective specimen sizes, and the average normal strain (&/L). For the smaller specimens two
possibilities are considered: a changing internal length=1/0.5 mm (so that //L = 0.01) and a

constant internal length I = 2 mm. For all cases the fracture energy G, is the same.

Nominal stress [N/mm?] Log(max. stress)

3 0.50
— 1/L=0.01 o [/L=0.01
s [=2mm
+0.45
° R 0. 40
+0.35
T T T ! T T T T .30
0 0.5 1.0 1.5 2.01.5 1.7 1.9 2.1 2.3 2.5
%107 average normal strain Log(size)

Fig. 12. Nominal tensile stress versus average tensile strain diagram and the size effect on the

peak-stress (path 6).

As can be seen in Fig. 13 the choice of the internal length can influence the predicted fracture mode.
If the internal length scale is decreased together with the specimen size, two cracks are predicted for
all three specimens. If the internal length is kept constant, we find just one fracture zone for the
medium and small specimen. It is noted that in the experiments both crack patterns, distributed and
with dominant cracks, were observed in the series of medium and small specimens. From Fig. 12 we
observe, that the choice of the internal length influences the softening behaviour. A classical size
effect is found both in the peak-stress value and the post-peak regime although in the experiment a
reversed size effect was found for path-6 tests. It is mentioned that since an internal length scale is
incorporated in the numerical model, the predicted size effect law need not be a power law and our

results correspond to the predictions of nonlinear elastic fracture mechanics, cf. BaZant (1992).
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Fig. 13. Contour plots of equivalent fracture strain for the smallest specimen and different internal length
values: 1 = 0.5 mm (left and | = 2mm (right).



In sum, the gradient-dependent Rankine plasticity model seems to be less accurate for the mixed-
mode fracture problem than for the plain Mode-I cases. As in the SEN beam example the curved
shape of the experimentally observed cracks has not been reproduced. However, the localization
limiting properties of gradient plasticity make the results much closer to experiments than the
results of the smeared-cracking model, cf. Nooru-Mohamed (1992).

Final remarks

In this paper the potential of gradient-dependent plasticity, Miihlhaus et al. (1991), de Borst et al.
(1992) as a localization limiter in shear (Mode-II), tension (Mode-I) and mixed mode problems has
been assessed. The employed continuum theory includes a regularizing dependence of the yield
function on higher-order spatial derivatives of a plastic strain measure and therefore the boundary
value problem for a softening continuum remains well-posed in the post-peak regime.

The fundamental feature of the used algorithm is a weak (and not pointwise) satisfaction of the
yield condition, which is coupled with a weak equilibrium condition. The dependence of the yield
function on the Laplacian of the plastic strain measure induces the necessity of C'-continuous inter-
polation of the plastic strain field in the incremental formulation. However, a Co—approach has also
been presented, in which the continuity requirement is relaxed by treating the first derivatives of
the plastic multiplier as additional unknowns and connecting them to the plastic multiplier field
using a penalty constraint.

Most of the implemented elements introduce properly the localization limiting properties of the
gradient-dependent continuum: the results of finite element simulations are almost insensitive to
mesh refinement or alignment, since the width of the shear bands (fracture process zones) is
determined by the internal length scale incorporated in the theory.

The problems solved prove that the gradient plasticity models may be successfully applied in the
numerical verification of experiments as well as the simulation of instability phenomena in
frictional materials. The approach is effective for the description of localized failure under Mode-I,
Mode-II and mixed-mode conditions.

A vertex-enhancement of the Rankine criterion is required for a proper modelling of Mode-I and
mixed mode fracture of concrete. Though no fully robust solution has been found within the frame
of the present algorithm, acceptable results have been obtained when the vertex is smoothed. The
Rankine softening gradient plasticity with an exponential softening rule and a decreasing gradient
influence reproduces closely the experimentally observed structural response and size effect. The
load-deformation diagrams for these problems are governed by the value of fracture energy Gyand
are not affected by the assumed value of the internal length, unless its change results in a different

localization mode.
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