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Abstract

The problems commonly encountered in the numerical analysis of reinforced structures
are often related to biaxial stress states in the structure. In this study this problem is
solved with the formulation of a composite plasticity model which describes both crack-
ing and crushing of concrete within the framework of plasticity theory. The other issue
which is treated in this study is the rational modeling of the interaction between con-
crete and reinforcement.

Keywords: Finite element analysis, fracture mechanics, softening, reinforced concrete.






Aspects of Robust Computational Models

for Plain and Reinforced Concrete

1. Introduction

Reinforced concrete is one of the most commonly used materials in civil engineering
with applications in all kinds of structures, such as high rise buildings, cooling towers
and offshore platforms. The design of these structures is usually based on a linear-
elastic analysis to calculate the internal forces in the structure which are then used to
design the reinforcement and the details of the structure using code provisions. These
codes are usually based on an empirical approach, using experimental data, and provide
design rules to satisfy safety and serviceability requirements. Although the design of
reinforced concrete structures based on a linear-elastic stress analysis is adequate and
reliable in most cases, for complex structures under complex loading conditions, nonlin-
ear finite element analyses are often required. With these analyses, information can be
obtained regarding the ultimate load capacity and the post-failure behavior of the struc-
ture.

The behavior of concrete structures is characterized by a reduction of the load-
carrying capacity with increasing deformations after reaching a certain limit load. This
global behavior is usually caused by a material behavior which is described as strain
softening and occurs in tension and in compression. Due to this softening behavior, the
deformations tend to localize in a small part of the structure which can introduce mesh-
dependent responses in finite element calculations. This deficiency can partially be
solved by relating the constitutive model to a fracture energy and to the geometry of the
finite element mesh via an equivalent length. In reinforced concrete generally a number
of cracks will develop in the structure due to the bond action between concrete and rein-
forcement. This results in a redistribution of the tensile load from concrete to reinforce-
ment. This phenomenon is called tension-stiffening, because the response is stiffer than
the response with a brittle fracture approach. The tension-stiffening is closely related to
the tension-softening in plain concrete and the controversy between tension-softening
and tension-stiffening approaches seems to have been exaggerated in the past.

An issue which can cause numerical difficulties is the biaxial stress state, especially
in tension-compression. The numerical problems are mainly due to the fact that the non-
linear behavior in tension, viz. cracking, is treated by a different constitutive model
than the nonlinear behavior in compression, viz. crushing. These different constitutive
models are treated in different algorithms and a local iteration on a constitutive level is
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necessary to meet both the cracking and the crushing conditions. This local iteration
process can result in an oscillating numerical process if both cracking and crushing
occur in the same integration point. Because tension-compression stress states often
occur in reinforced concrete, this problem is encountered frequently.

The behavior of reinforced concrete is highly nonlinear which is caused by mecha-
nisms such as cracking, crushing, creep and shrinkage of concrete, but is also caused by
interaction between reinforcement and concrete. Because all these mechanisms are
interacting, it is not realistic to try to formulate a constitutive model which incorporates
all these mechanisms, but a model has to be formulated which adequately describes the
behavior of a structure within the range of application which has been restricted in
advance. Although the constitutive models which are developed within this phenomeno-
logical approach are usually simplified representations of the real behavior of a material,
it is believed that more insight can be gained by tracing the entire response of a structure
in this manner, than modeling a structure with highly sophisticated material models
which do not result in a converged solution after failure load. Since structural failure
cannot be identified with divergence of the iterative procedure, the principal aim of this
study is to discuss robust algorithms in order to provide the structural engineer with reli-
able numerical tools.

2. Material model for plain and reinforced concrete

In experiments on plain concrete, two types of failure are observed which are both char-
acterized by the formation of cracks in the material. When a concrete specimen is
loaded in tension the response is nearly linear up to the maximum load. At peak load
existing cracks at micro-level due to hydratation and drying shrinkage, see Wittman
(1983), localize in a narrow band and a macro-crack develops in the process zone which
is attended by a decrease of the external load, Hordijk (1991). Recently, also the com-
pressive failure of concrete has been recognized to be governed by cracking of concrete,
Van Mier (1984), Vonk (1992). The crack growth at the micro-level causes the softening
behavior of concrete under compression. Until about 30 % of the maximum compres-
sive strength the material behaves linear-elastically because pre-existing micro cracks
are stable and do not propagate. These micro cracks start to grow if the specimen is
loaded further and up to the maximum compressive strength the formation of combined
mortar and bond cracks have been observed. After the maximum compressive strength
macro cracks develop because the micro cracks localize in narrow bands which is
attended by a decrease of the external applied load.

The behavior of reinforced concrete is also characterized by the formation of cracks
in the material. The major difference with plain concrete is the bond action between
concrete and reinforcement which results in the formation of a number of cracks and a
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redistribution of internal stresses from concrete to reinforcement.

The constitutive behavior will be modeled according to a phenomenological
approach in which the observed mechanisms are modeled in such a fashion that simula-
tions with the developed material model are in reasonable agreement with the experi-
ments.

2.1 Discretization aspects

The constitutive behavior of concrete will be modeled with a smeared model in which
the damaged material is still considered as a continuum in which the notions of stress
and strain apply. With this assumption, the localized damage can be represented by an
internal damage parameter, denoted as k', which is related by an equivalent length to the
released energy per unit cracked area, G;. In a finite element calculation this equivalent
length should correspond to a representative dimension of the mesh size, as pointed out
by many authors, see BaZant and Oh (1983), Crisfield (1984), Willam, Pramono and
Sture (1986), Rots (1988) and Oliver (1989). The equivalent length, denoted by #,
depends in general on the chosen element type, element size, element shape, integration
scheme and even on the particular problem considered. In this study it is assumed that
the equivalent length is related to the area of an element, as follows

'
n; n 2
h= ayA, = a,,( 3 Y det(d) w, w,,) )

E=1p=1

in which w; and w, the weight factors of the Gaussian integration rule as it is tacitly
assumed that the elements are always integrated numerically. The local, isoparametric
coordinates of the integration points are given by ¢ and 5. The factor ¢, is a modifica-
tion factor which is equal to one for quadratic elements and equal to \2 for linear ele-
ments, see Rots (1988). The equivalent length calculated with this formula is accurate
when the mesh is not distorted too much and when most cracks are aligned with the
mesh lines. For most practical applications the formula for the equivalent length, eq.(1),
gives a good approximation.

The accumulated damage in the material will be represented by an internal parame-
ter ¥ which is assumed to be determined by the inelastic work using a work-hardening
hypothesis. The inelastic work rate W.. is defined by

W, =o' ¢ = 6(x)k )

in which &, the inelastic strain rate vector and &( x ) an equivalent stress as a function
of the internal parameter x. The inelastic work g is then defined by the integral
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Assuming that the inelastic work g, is distributed uniformly over the equivalent length,
the relation between the fracture energy G, and the work g, is given by

Gy

4
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This results in a material model which is related to the energy which has to be dissipated
due to the irreversible damage in the material. The concept of an equivalent length has
been used extensively in the analysis of concrete structures. In this study, this concept
will also be used to model the compressive softening behavior of concrete, although it is
recognized that this mechanism is perhaps more related to the volume of the elements
than to a representative length of the elements.

The nonlinear material behavior is now completely governed by an assumed equiv-
alent stress - internal parameter relation, the 6 — « relation, which will be discussed in
the next paragraph for both tension and compression.

2.2 Uniaxial behavior of plain concrete

The design of concrete structures is usually based on a grade of concrete which corre-
sponds to a specific value of the characteristic compressive strength f;, which is deter-
mined with compressive tests on concrete cylinders 150 [mm] in diameter and 300 [mm]
in height, see CEB-FIP model code (1990). A characteristic stress-displacement dia-
gram for concrete loaded in compression is shown in Figure 1. For purposes of simula-
tion and for an estimate of other concrete properties, the mean value of the compressive
strength f,,, is needed, which is estimated by, see CEB-FIP model code (1990),

fcm = fck + 8 [N/mmz] ()]

The initial behavior of concrete is modeled using a linear-elastic constitutive model
which is completely defined by the Young’s modulus and the Poisson ratio. The
Young’s modulus of concrete is defined as the initial slope of the stress-strain diagram
and depends on the compressive strength and on the type of aggregate. For normal
weight concrete the Young’s modulus can be estimated from the CEB-FIP model code
(1990) recommendation

E, = 10* £ [N/mm*) )

The Poisson ratio ranges from 0. 1 to 0. 2. In this study a value of the Poisson ratio equal
to 0. 15 will be used. Concrete loaded in compression behaves linear-elastically up to
approximately 30 % of the compressive strength and upon further loading a gradual
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Figure 1 ~ Concrete specimen under uniaxial compressive loading.

decrease of the stiffness is observed. If the deformation continues after the maximum
compressive stress, the slope becomes negative and the descending branch of the stress-
deformation curve characterizes the softening behavior of the concrete. The compres-
sion softening behavior of a concrete specimen is highly dependent upon the boundary
conditions in the experiments and the size of the specimen, Van Mier (1984) and Vonk
(1992). It is nevertheless assumed in this study that the compressive softening of con-
crete can be represented by a compressive fracture energy, denoted as G., which is
assumed to be a material parameter. With this energy-based approach the compressive
and tensile softening can be described within the same context which is plausible,
because the underlying failure mechanisms are identical, viz. continuous crack growth
at micro-level. Experimental data of the compressive fracture energy have been pro-
vided by Vonk (1992) who distinguishes a local compressive fracture energy which is
constant and a continuum compressive fracture energy which is increasing with increas-
ing specimen height. The total compressive fracture energy which has been found in the
experiments ranges from 10 to 25 [Nmm/mm?*] which is about 50-100 times the tensile
fracture energy.

The compressive stress-strain behavior has been approximated by different
functions, see e.g. Vecchio and Collins (1982), CEB-FIP model code (1990), but these
relations are usually no energy-based formulations. In this study, the compressive con-
stitutive model will be modeled either with ideal plastic behavior or with a compression
softening model given by a parabolic equivalent stress-equivalent strain diagram accord-
ing to Figure 2, which has been modified for the fracture energy-based model. The for-
mulation of the equivalent stress reads
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Figure 2 Compression softening model

Figure 3  Concrete specimen under uniaxial tensile loading.

2
f;’"(1+4f——2%) if K<k,
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The maximum compressive strength will be reached at an equivalent strain x, which is
determined irrespective of element size or compressive fracture energy and reads

_ 4fcm

= 8
Ke 3E, ®)

The maximum equivalent strain x, is related to the compressive fracture energy and the
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element size and reads

g

G
K, = 1.5
h f‘('”l

)

A possible snap-back on constitutive level if the equivalent length becomes too large,
has been avoided by the assumption that the ultimate equivalent strain «,, is limited by

x, = 1.75 , (10)

It is noted that the limiting case x, = 1.75 «, results in a steep descending branch after
maximum stress.

The tensile strength of concrete is in accordance with the CEB-FIP model code
(1990) related to the compressive strength. For the simulations performed in this study,
the characteristic value of the tensile strength has been estimated by the CEB-FIP model
code (1990) relationship

fum = 0.30 f2 [N/mm?] an

A characteristic stress-deformation curve for concrete subjected to tensile loading is
shown in Figure 3. Up to approximately 90 % of the maximum tensile load, the concrete
behaves as a linear-elastic material. Then a macro-crack starts to develop and the stiff-
ness reduces rapidly until the macro-crack cannot transfer any stress anymore. The
released energy is then determined by the area under the stress-displacement diagram,
which is equal to the fracture energy times the crack area. The fracture energy G is
assumed to be a material parameter and is related to the compressive strength of the
material f,, and the maximum aggregate size d,,, according to the CEB-FIP model
code (1990) recommendations which reads

Gy = Gpo (fom! fomo)®" [Nmm/mm®] 12)

where f,,o = 10[Nmm/mm?]. The base value for the fracture energy, Gr,, depends on
the maximum aggregate size d,,,, as given in Table 1.

Table 1 Base values for fracture energy G, [ Nmm/mm?*] ( CEB-FIP model code )

dmax [mm] GFO [Nmm/mmz]
8 0.025
16 0.030
32 0.058

The material model up to the tensile strength f,, ,, is assumed to be given by a linear-
elastic model. The material model for tensile behavior after the tensile strength has been
violated is depicted in Figure 4 as an equivalent stress - equivalent strain diagram. The
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Figure 4  Tension-softening models

post-peak response is governed by the tensile fracture energy and the equivalent length.
The tensile stress-strain relationship has been approximated by different functions, see
e.g. CEB-FIP model code (1990), Hordijk (1991), and is one of the relevant features of
the nonlinear tensile behavior of plain concrete, Rots (1988). In this study two different
softening diagrams will be used, the linear and exponential diagram. For linear soften-
ing the equivalent stress as a function of the internal damage parameter x is given by

_ K
o = fct,m ( 1-— ) (13)
Ku

and for exponential softening
G = fct,m exp( -x/ Ky ) (14)
The ultimate damage parameter x, is calculated by

G
K, = k 4
B fetm

15)

with k& = 2 for linear softening and k = 1 for exponential softening. The parameter x, is
assumed constant during the analysis and is considered to be an element-related mate-
rial property which can be calculated from the material properties, the tensile strength,
the fracture energy and the element area represented by the equivalent length. The ten-
sile fracture energy will be released in an element if the tensile strength is violated and
the deformations localize in the element. With this approach the results which are
obtained with the analysis are objective with regard to mesh refinement. It is however
possible that the equivalent length of an element results in a snap-back in the constitu-
tive model and the concept of objective fracture energy which has been assumed is no
longer satisfied. In this case the strength limit has to be reduced in order to obtain an
objective fracture energy by a sudden stress drop, resulting in brittle fracture, see Rots
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(1988). The condition of a maximum equivalent length is given by

G, E
h< k=L (16)
fct,m

If the condition of eq.(16) is violated, the tensile strength is reduced to

G,E\"
Joom = kT (17)

2.3 Biaxial behavior of plain concrete

The constitutive behavior of concrete under biaxial states of stress is different from the
constitutive behavior under uniaxial loading conditions. The influence of the biaxial
stress state has been investigated up to peak stress to provide a biaxial failure criterion,
where it becomes evident that the tensile strength of concrete is influenced by the lateral
stress state. The experimental data of concrete subjected to proportional biaxial loading
is shown in Figure 5, Kupfer and Gerstle (1973). The maximum compressive strength
increases approximately 16 % under conditions of equal biaxial compression, and about
25 % increase is achieved at a stress ratio of oy / o, = 0. 5. A lateral compressive stress
decreases the tensile strength, which can be explained that a lateral compressive stress
introduces tensile stresses at the micro-level due to the heterogeneity of the material,
which increases the process of internal damage, Vonk (1992). A lateral tensile stress has
no major influence on the tensile strength. The increase in the compressive strength
under biaxial compression can be explained by internal friction and aggregate interlock.
The failure envelop which can been derived from the data of Kupfer and Gerstle is also
valid for nonproportional loading because the strength envelop seems to be largely inde-
pendent of the loading path, Nelissen (1972), which confirms the notion that softening
due to compressive or tensile external loadings has the same underlying failure mecha-
nism, i.e. continuous crack growth at the microlevel. Experimental data on the soften-
ing behavior of concrete under biaxial stress conditions are scarce but there is a consen-
sus of opinion that the softening of concrete is influenced by a biaxial stress state. For a
multi-axial stress state it has been shown that softening is very sensitive for a confining
pressure but in a biaxial stress state the concrete can always fail in the third direction
which reduces the sensitivity to the confining pressure, Vonk (1992).

2.4 Uniaxial behavior of reinforced concrete

The uniaxial compressive behavior of reinforced concrete is usually modeled with the
compressive material model for plain concrete which has been discussed previously.

The tensile behavior of reinforced concrete is not fundamentally different from plain
concrete and is also governed by cracking in the concrete. A characteristic stress-
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Figure 5  Biaxial strength of plain concrete, Kupfer and Gerstle (1973)
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Figure 6  Reinforced concrete tensile member.

displacement diagram of a tension test is depicted in Figure 6. The existing cracks at
the micro-level localize in a narrow band and a number of primary macro-cracks will
develop. But due to bond between concrete and reinforcement, a gradual redistribution
of internal forces from concrete to reinforcement is possible under the formation of sec-
ondary cracks until a stabilized crack pattern has developed. It is clear that the stiffness
of the tension member is increased with reference to the reinforcing bar by the stiffness
of the concrete. This effect is usually referred to in the literature as the tension-stiffening
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effect. Different formulations have been put forward for this tension-stiffening phe-
nomenon, but in most formulations no reference has been made to the fracture energy
which is actually released in the material.

The total amount of released energy at stabilized cracking is determined by the frac-
ture energy of a single crack G, and the average crack spacing /. The transition
between plain and reinforced concrete can be obtained by assuming that the released
energy is at least equal to the fracture energy of the material and it is assumed that the
released energy can be determined by

h
rfczmin{Gf’fo} (1)

with G the fracture energy of a single crack, & the equivalent length and /; the average
crack spacing. It is noted that if the equivalent lenght 4 is smaller than the average crack
spacing [, the model is not valid. In general, the dimensions of the finite elements in
simulations of reinforced concrete structures, and thus the equivalent length &, are much
larger than the average crack spacing, [, which implies that the total amount of released
energy is a number times the fracture energy. The average crack spacing is a function of
the bar diameter, the concrete cover and the reinforcement ratio according to the CEB-
FIP model code (1990), which reads

s

s

I, =2 Lymax = Y3 (259 +

) (19)

with sy the minimum bond length, ¢, the diameter of the reinforcement, a factor & equal
to four for deformed bars and « equal to two for plain bars and the reinforcement ratio
P, given by
—_ A‘Y
ps = A—c (20)

with A; the total area of reinforcement and A, the cross area of the tensile member. The
minimum bond length s, is usually taken equal to 25 [mm] in the absence of more pre-
cise data. A comparison of 132 experiments on tensile members, Braam (1990), showed
that the average crack spacing given by eq.(19) is a good approximation of the experi-
mentally observed crack spacing.

The formulas given in the previous paragraph are all related to the crack spacing in
reinforced tensile members. Now, attention will be focused on the approximation of the
released energy in plane two-dimensional structures like panels, reinforced with a rein-
forcing grid in two orthogonal directions. The crack spacing in panels is usually deter-
mined by treating a panel as a tensile member by the definition of an effective reinforce-
ment ratio. If the reinforcement is supplied with a layer of a reinforcing grid, the aver-
age crack spacing is calculated with a modified expression of eq.(19),
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Figure 7 Concrete slab with two layers of reinforcement. Effective tension area
according to CEB-FIP model code.

Iy = 3l 0 = H3(25 + i ) 2D
o ps,eﬂ’

with the effective reinforcement ratio p, . determined by

A
Ac,ejf

B

ps,eﬂ = (22)

The effective tension area, A,z = h.y b, is estimated according to the CEB-FIP rec-
ommendations with the relation

. Gog . 1
hy = 2. : -
off mm{ 5(c+2),2}

with ¢ the concrete cover on the reinforcement, ¢,, the equivalent bar diameter of the
reinforcement and ¢ the thickness of the structure. These geometrical properties are
shown in Figure 7. The effective tension area is calculated with the equivalent bar
diameter of the reinforcing grid which is determined by

— ¢s,p Pp + ¢s,q Pq
Pp + Pq

Peq 23)

with the reinforcement ratios p, and p, in the p- and g-directions of the reinforcing
grid, respectively. The diameter of the reinforcement is given by ¢, , and ¢, in the p-
and g-direction. The average crack spacing can now be calculated in the two directions
of the reinforcing grid. The crack spacing given by eq.(21) is based on the fact that the
cracks form at right angles to the reinforcing direction. When the cracks form at
inclined angles with the reinforcing directions this identity cannot be used to estimate
the crack spacing. In these cases, the average crack spacing is calculated with the fol-
lowing expression according to the CEB-FIP model code (1990),
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P
where o denotes the angle between the reinforcement in the p-direction and the direc-
tion of the principal tensile stress at incipient cracking. The crack spacings predicted
with eq.(24) are theoretically reasonable. For a structure reinforced equally in the p- and
g-directions subjected to a pure shear loading, the cracks are forming at 45° to the p-
direction and the crack spacing is 1,2 times the crack spacing in the p- or g-direction.
If the structure is only reinforced in the p-direction, the crack spacing for tension in the
p-direction is equal to the value given by eq.(21). For tension in the g-direction the pre-
dicted crack spacing is equal to infinity, which implies that only one crack is formed in
the structure. Comparison of the theoretical crack spacing with the experimental results
of one-directionally reinforced structures shows that the trend of the crack spacing with
increasing angle « is predicted correctly, but that the crack spacing is usually underesti-
mated, Bhide and Collins (1987). This is due to the fact that only primary cracks have
been observed with the secondary cracks being ignored. The expression of eq.(24) may
be used according to the CEB-FIP model code (1990) when a more advanced model is
not available.

As indicated in Figure 7, the reinforcement is usually applied in more layers with an
arbitrary direction through the thickness of the structure. The average crack spacing of
the structure is then determined by the smallest average crack spacing of all reinforcing
grids. The average crack spacing in the case of different reinforcing grids with arbitrary
directions will be given by by a modification of eq.(24),

~1
I, = (ax + ayj (25)

in which the factors a, and a, are determined by

lcosa; |
a, = max(———
ls,pj .
. .]=17""ngrid (26)
I'sine; |
a, = max( -)
$,q)

with a; the angle between the reinforcement p-direction and the direction of the princi-
pal tensile stress at incipient cracking. It has tacitly been assumed that the cracks propa-
gate through the entire thickness of the structure with no localization in the thickness
direction. With this approach, the fracture energy in reinforced concrete can be assessed
on the basis of the fracture energy of concrete, the reinforcement properties and the
angle between reinforcement and the principal stress at incipient cracking. In this fash-
ion, the tension-softening of reinforced concrete has been formulated in a rational man-
ner.

After a stabilized crack pattern has developed, stresses are still transferred from
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Figure 8  Constitutive model of reinforced concrete. Schematical representation.
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Figure 9  Tension-stiffening model.

reinforcement to concrete between the cracks due to the bond action which increases the
total stiffness of the structure, see Figure 6. In this study it is assumed that the behavior
of cracked, reinforced concrete loaded in tension can be considered as the superposition
of the stiffness of plain concrete, a stiffness of the reinforcement and an additional stiff-
ness due to bond between concrete and reinforcement which is referred to as the interac-
tion contribution to the stiffness. This leads to the following summation of stress contri-
butions

o = O, + (o0 + O, @n

with o, the stress contribution of the concrete, o, the contribution of the reinforcing
steel, and o, the interaction stress contribution due to tension-stiffening, see Figure 8.
The additional stress due to tension-stiffening is assumed to be given as a function of
the strain in the direction of the reinforcement and will be active on the effective tension
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area defined in Figure 7. The interaction stress is assumed to be given by a tri-linear
function according to Cervenka, Pukl and Eligehausen (1992) which is depicted in Fig-
ure 9. The interaction stress is only active if the strain in the reinforcement is larger
than €., which is determined by

£ = - cost o (28)

with o the angle between the direction of the reinforcement and the direction of the
principal stress at incipient cracking. The factor €., is determined by the crack spacing,
the equivalent length of the element and the fracture energy of the concrete and is given
by

rc

£ = k cos?

29

ct,m

with k equal to one for exponential softening and k equal to two for linear softening.
The constant part of the diagram is a fraction of the tensile strength of the concrete with
the factor ¢, as a rough approximation equal to the tensile strength, i.e a,; =1.0. The
tension-stiffening component is reduced near the yield strain of the reinforcement ¢, in
order to avoid an artificial increase of the yield stress of the reinforcement. The strain at
which the tension-stiffening component is reduced is given by

o m
. _ 1S fCI, (30)
ps,eﬁ' Es

This tri-linear function will be used in this study, but further research to the actual func-
tion is necessary.

2.5 Biaxial behavior of reinforced concrete

The biaxial failure surface of plain concrete is also applicable to reinforced concrete,
because the reinforcement is usually not activated in the linear-elastic state. The tension-
tension behavior is not affected by the biaxial stress state and will be modeled with the
uniaxial behavior in both directions. The compression-compression behavior will also
be modeled with the uniaxial model. The compression-tension behavior of reinforced
concrete is usually modified after cracking, because it is assumed that the compressive
strength of concrete is affected by cracking in the lateral direction. Vecchio and Collins
(1982) analyzed the results of their experiments and found that the compressive strength
should be reduced as a function of the lateral tensile strain down to 20 %. The large dis-
crepancy between the proposal of Vecchio and Collins and the usual reduction up to
20 %, see for an extensive literature survey Kollegger and Mehlhorn (1990a), was the
starting point of a comprehensive experimental study by Kollegger and Mehlhorn at the
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Figure 10 Experiment Kollegger and Mehlhorn (1990a).

0y

1 Jem

0.2

o

1.2 -1.0 -0.8 -0.6 -0.4 -0.2 fem

Figure 11 Biaxial strength of reinforced concrete, Kollegger and Mehlhorn (1990a).

University of Kassel. The experimental study concerned 47 panels with dimensions
500 x 1000 [mmz] and a thickness of 100 [mm] loaded in a tension-compression state,
see Figure 10. The study concerned five series of tests with different reinforcement
geometry and reinforcement directions. An influence of the reinforcement properties
could not be determined in the study, and a reduction of the compressive strength up to
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Figure 12 Compressive strength as a function of the transverse strain, Kollegger and
Mehlhorn (1990a).

20 % as a function of the transverse tensile stress was proposed. The experimental

results of all panels are given in Figure 11 in which the compressive strength of the pan-

els is plotted against the lateral stress. It is clear that the stresses in the panels are com-

pressive in the direction of the tensile loading. These compressive stresses result from

prevented lateral strain by the reinforcement in the tensile direction and is calculated by
F

o) = 7&_ — o,(&1) - py

with F, the tensile force, A, the concrete area and o, the stress in the reinforcement as a
function of the strain component &; which is measured on the panel surface. The rein-
forcement ratio in the lateral direction is denoted by p;. However, when Figure 11 is
examined in more detail, it is not obvious that the compressive strength is a function of
the transverse stress, since we observe a constant reduction of the compressive strength.
If the compressive strength is depicted as a function of the transverse strain, see Figure
12, it is even more obvious that a reduction of the compressive strength as a function of
the lateral strain cannot be observed, but that the apparent compressive strength of the
panels is approximately 70 % of the mean compressive strength. The compressive
strength has been determined with compression tests on concrete cubes
200 x 200 x 200 [mm®] and the difference between the cube compressive strength and
the apparent compressive strength of the panels is according to Kollegger and Mehlhorn
the result of the manufacturing of the panels, eccentricities and the nonlinear relation
between the mean compressive strength and the biaxial stress state in the panels. The
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compressive strength of two panels which have been loaded in compression without ten-
sile loading have been given with a solid dot in Figures 11 and 12. These two panels
have been reinforced only by four rebars with a diameter of 6.5 [mm] in the corners and
also for these two panels a reduction of the compressive strength is observed of approxi-
mately 70 %. These panels can be considered as plain concrete and it is obvious that
also for these panels the apparent compressive strength is reduced when compared with
the cube compressive strength. A possible explanation for this phenomenon is that the
compressive strength of concrete is highly influenced by the boundary conditions and
the size of the specimen, see Van Mier (1984), Vonk (1992). The size effect and the
effect of the boundary conditions should result in a constant reduction of the compres-
sive strength of all panels with or without reinforcement which is indeed observed. Fur-
ther investigations should give more insight in the mechanisms of strength reduction,
size effect and boundary conditions in compressive tests. At present it is assumed that
the compressive strength of concrete is reduced by a constant factor of approximately
20 %.

3. Modeling of plain concrete

The mathematical description of material behavior is commonly named a constitutive
model. In this study, two different types of constitutive models will be used for the
description of plain concrete, firstly constitutive models based on an incremental or a
rate formulation, and secondly constitutive models based on a total formulation. The
advantages of the first model are that the model allows for a transparent combination
with other nonlinear phenomena, such as creep, shrinkage and thermal loading, and that
it incorporates path-dependent behavior which allows for non-proportional loading. The
advantage of the second model is the conceptual simplicity.

A well established incremental formulation is the fixed multi-directional crack
model, De Borst and Nauta (1985), Rots (1988), which allows for a number of non-
orthogonal cracks. In this model, a crack is formed perpendicular to the direction of the
major principal stress if this stress violates the tensile strength. After the first crack,
another crack is allowed to form if the tensile strength is again violated by the major
principal stress, and if the angle between the existing crack and the direction of the
major principal stress exceeds a certain value, the threshold angle. Usually, this thresh-
old angle is set equal to 30° which implies a maximum number of cracks which are
allowed to form of six. However, numerical difficulties have been reported when state
changes occur, Crisfield and Wills (1989). To analyze structures which are in a state of
compression-tension, e.g. shear wall panels, the crack model can be combined with a
plasticity model to describe crack formation and plasticity, De Borst and Nauta (1985),
but this combination has been reported to result in numerical difficulties, Wang, Van der
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Vorm and Blaauwendraad (1990). Because the major goal of this study is the develop-
ment of stable numerical tools to analyze reinforced concrete structures, a different
model has been formulated to solve both the problem of overestimation of the failure
load with the fixed smeared crack model, Rots (1988), and the numerical problems in
the tension-compression region. A constitutive model has been developed which
describes the formation of cracks within the framework of plasticity. The theory of plas-
ticity is well established and sound numerical algorithms have been developed, see for
instance Simo, Kennedy and Govindjee (1988).

The rotating crack model is usually presented in a total strain formulation, see
Willam, Pramono and Sture (1986), and this model has been used in the analyses of
reinforced concrete structures, Kolleger (1988), Crisfield and Wills (1989). If the Pois-
son effect is neglected after cracking, the model is probably the most appealing
approach for engineers to describe the nonlinear behavior of concrete in tension and
compression. A nonlinear compressive behavior is easily implemented in such model,
because the algebraic formulation can be extended with a compressive branch. for the
rotating crack model.

3.1 Incremental formulation

A constitutive model formulated in an incremental format offers the possibility to model
the history of the material implicitly with the definition of internal variables. If an addi-
tive decomposition of the strain rate vector £ is assumed into an elastic, reversible part
£, and an inelastic, irreversible part €.,

é = ¢, + &, @D

the basic formulation is given. The elastic strain rate vector determines the stress rate
vector through the elastic stiffness matrix D,

6 =D,é, (32)

The evolution of the inelastic strain is dependent upon the assumption of the constitutive
model and is in general a function of the stress and strain vector and the internal vari-
ables. The inelastic strain will now be determined with a incremental formulation based
on the flow theory of plasticity. A fundamental notion of plasticity theory is the exis-
tence of a yield function

f(o.,q) =20 (33)

which depends on the stress vector o and on a number of scalar-valued internal vari-
ables, conveniently collected in a vector gq. The inelastic strain vector is now assumed
to be given by an associated flow rule,
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Figure 13 Mohr’s circle.

af
E. = ﬂé; 34)

with A the inelastic multiplier which is determined by the additional constraint that
f=0.

Consider a plane-stress situation in which the major principal stress ¢ is defined by
means of a Mohr’s circle, see Figure 13. The maximum tensile stress criterion of Rank-

ine can then be used to determine the tensile strength of concrete. This results in a yield
function which reads

f= (ho'P,o)" + ha' ¢ — &(xp) (35)

with the equivalent stress & as a function of the internal parameter «r. The projection
matrix P, and the projection vector z are given by

I =Y 0 0
- Y 0 0
P, = 36
! 0 0 0 O G0
0O 0 0 2
and
z=1{1,1,0,0}" 37

respectively. The equivalent stress &(x7) is the uniaxial tensile strength which is
assumed to be given by one of the tension-softening models given in eq.(13) or eq.(14).

The disadvantage of the Rankine criterion is that the stresses are only bounded in the
tensile region. However, the plasticity theory is also applicable to a situation where the
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Figure 14 Comparison of a Rankine-Von Mises yield surface with experimental data
of Kupfer and Gerstle (1974). &1 = fo1 ., 62 = 1.1 fon

constitutive model consists of two different yield surfaces, one bounding the tensile
stresses, the other applicable in the compressive region, which can be represented by

fi =0
(38)

Il
(=)

f

Comparison with the experimental data of Kupfer and Gerstle (1974) indicates that a
composite yield contour can be defined such that a Rankine yield criterion is used to
model the tension-tension region and a Von Mises yield function models the compres-
sive stress states, Figure 14. The formulation of the composite yield criterion is given
by the function of the Rankine yield function and by the function for the Von Mises
yield criterion in the stress space, which results in

fi = (ho'™Pya)" + oa” o - &(xy)
(39)

(Yo Py o))" — Gy(xc)

f2
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with an isotropic hardening rule for both the Rankine and the Von Mises criterion. The
Von Mises yield function is determined by the projection matrix

2 -1 -1 0
P, -1 2 -1 o0 )
-1 -1 2 0
0 0 0 6

and the equivalent stress ¢, as a function of the internal parameter x-. This equivalent
stress is the uniaxial compressive strength which is assumed to be given by the parabolic
softening model given in eq.(7).

The constitutive model is now given by a composite yield surface which bounds the
stresses in the tension-tension, tension-compression and the compression-compression
regions. The material behavior, as described in Chapter 2, is determined by tthe internal
parameters, k7 and k. For details about the numerical elaboration the reader is referred
to Feenstra (1993).

3.2 Total formulations

The fundamental difference between the total formulation of the constitutive model and
the incremental formulation discussed in the previous paragraphs is the formulation in
strains rather than in strain rates. Commonly used total formulations are the fixed and
rotating crack models, Willam, Pramono and Sture (1986), Rots (1988), Crisfield and
Wills (1989). In this study the elasticity-based rotating crack model in a co-rotational
format is used with the assumption that the local constitutive model which describes the
relation between the local stress vector and the local strain vector, is transformed into
the global coordinate system with a transformation matrix which is determined by the
principal directions of the strain vector. The strain vector in the global coordinate sys-
tem £ is updated by the incremental strain vector which follows from the equilibrium
iterations, according to

e = € +Ae¢ 41)

which is transformed to the strain vector in the local coordinate system &, with the
strain transformation matrix 7'(¢)

€,, = T(¢9) € 42)

with
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cos ¢ sin® ¢ 0 sin ¢ cos ¢
sin® ¢ cos’ ¢ 0 —singcosg¢
0 0 1 0
—2singcosg 2singcosg 0 cos’¢—sin’g

T(p) =

The constitutive model has to be formulated in the local coordinate system and should
give a relation between the local strain vector €, ; and the local stress vector o, ;. In an
unconstrained stress situation the general format reads

o, = D(g,,) €, 43)
The updated stress vector in the global coordinate system is then given by
o =T 0, 4)

This general formulation does not necessarily maintain co-axiality, because the principal
axes of stress do not need to coincide with the principal axes of strain. The formulation
presented here is merely a framework for the treatment of the rotating and the fixed
crack models within a total strain formulation, in order to compare the incremental and
total approaches. For more details see Feenstra (1993).

3.3 Tension-shear model problem

The fundamental differences of the formulations discussed in this chapter will be dis-
cussed with an elementary problem proposed by Willam, Pramono and Sture (1986), in
which a plane-stress element with unit dimensions is loaded in biaxial tension and shear.
This causes a continuous rotation of the principal strain axes after cracking, as is typical
of crack propagation in smeared crack finite element analysis. The element is subjected
to tensile straining in the x-direction accompanied by lateral Poisson contraction in the
y-direction to simulate uniaxial loading. Immediately after the tensile strength has been
violated, the element is loaded in combined biaxial tension and shear strain, see Figure
15. The ratio between the different strain components is given by
Ae,, : Ay, : Ay, = 0.5:0.75: 1. The material properties are given in Table 2. The
analyses of Rots (1988) of this problem with the multi-directional crack model show
that the shear response becomes softer with decreasing threshold angle, resulting in the
limiting case of the rotating crack model with zero threshold angle as the most flexible
response.
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Figure 15 Tension - shear model problem: (a) tension up to cracking; (b) biaxial ten-
sion with shear beyond cracking.

Table 2 Material properties tension-shear model problem.
concrete
E, 10000 [N/mm?]
v 0.2 (-
Setm 1.0 [N/mm?]
Gy 0.15107 " [Nmm/mm?]
1) linear softening
— 030+
& -
S initial shear modulus
Z Rankine plasticity model
= 0.20 4
©
rotating crack model
0.10 4
0.0 7 Y T T ]
0 1.0 2.0 3.0 4.0 5.0

Ty [107°]

Figure 16 G = oo. 0y, — ¥, T€Sponse.

The behavior of the different formulations for smeared cracking which have been
given can be studied in detail with this problem. The constitutive behavior will be
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Figure 17 Rankine plasticity model and the rotating crack model. o,, - ¥,, response.

compared with respect to the shear stress - shear strain behavior and the normal stress -
normal strain behavior in the x- and y-directions. Particularly the shear stress - shear
strain response gives a good impression of the behavior of the model when applied to
the analyses of structures.

1.0 -
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Figure 18 Rankine plasticity model and the rotating crack model. o, — ¢,, response.

The second issue is the comparison of the rotating crack model and the Rankine plastic-
ity model within an incremental formulation. Because the response of models with a
total formulation is in general more flexible than the response of models with an
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Figure 19 Rankine plasticity model and the rotating crack model. o,, — €,, response.

incremental formulation, we expect that the Rankine plasticity model with an incremen-
tal formulation shows a less flexible shear stress - shear strain response, but the compar-
ison should provide insight if this less flexible response is still acceptable.

The limiting case with no softening ( G; = oo ) confirms that the formulation
within the total strain concept results in a more flexible response than the incremental
formulation. The shear stress-shear strain responses of the rotating crack model and the
Rankine plasticity model are shown in Figure 16. It is clear from this figure that
although no softening has been assumed, the shear stress-shear strain response shows an
implicit softening behavior.

The plasticity model based on an incremental formulation has also been applied to
the tension-shear model problem with the material properties given in Table 2 and com-
pared with the rotating crack model in the following figures. The first interest concerns
the behavior in shear which is depicted in Figure 17. It is clear from this figure that the
rotating crack model has the most flexible response in shear, but the differences between
the rotating crack model and the Rankine plasticity model are minor. The Rankine plas-
ticity model results in a shear stress equal to zero when the apex of the yield surface has
been reached. The normal stress-strain response in the x-direction, see Figure 18,
shows an implicit normal stress-shear stress coupling for the models with an even more
pronounced coupling for the Rankine plasticity model. The normal stress-normal strain
response in the lateral direction, depicted in Figure 19 shows the linear softening rela-
tion when the apex of the yield surface has been reached.
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4. Application to plain concrete

The objective of this chapter is to compare the Rankine plasticity model and the rotating
crack model in applications to plain concrete structures. It will be shown that the Rank-
ine plasticity model is well capable to simulate crack propagation in plain concrete.

4.1 Single-edge-notched beam

The single-edge-notched geometry of the Iosipescu beam has been used in experiments
on concrete beams for the first time by Arrea and Ingraffea (1982). The experiments
show a curved crack propagating from the tip of the notched to the opposite side of the
loading platen. The experiments on the SEN-specimen have been simulated extensively
during the last decade, see De Borst (1986), Rots (1988), Rots (1992), Schlangen
(1993). RILEM committee 89-FMT has also proposed an experimental round robin
using the SEN-specimen to study the mixed-mode fracture process. The proposed
experimental set-up has been improved such that the experiments could be performed
without friction in the roller bearings, see for more details Schlangen (1993). The scatter
of the experimental results is small which makes the experiments very suitable for
numerical simulation. The stress state in the specimen is mainly tension-shear with
small compressive stresses. The objective of the analyses presented here is to simulate
curved mode I fracture propagation with the rotating crack model and the Rankine plas-
ticity model with an incremental formulation.

Table 3 Material properties single-edge-notched beam.

concrete
Fom 36.5 [N/mm?)
E, 35000 [N/mm?]
v 0.15 [-]
Fotm 2.8 [N/mm?*]
Gy 0.07" [Nmm/mm*]

1) exponential softening

The SEN-specimen are 400 X 100 x 100 [mm?] with a notch of 5% 20 [mm?]. The
distance between the inner supports is equal to 40 [mm] and the distance between the
outer supports is equal to 400 [mm]. The specimen has been discretized with 1655
three-noded plane-stress elements with a single integration point and a very dense distri-
bution of elements around the tip of the notch, see Figure 20. The distribution of the
loads has been modeled as described by Schlangen (1993), with F, = 10/11 F at the
center loading platen and F, = 1/11 F at the outer loading platen, with F the total load.
Only the center loading platen has been modeled because only this platen has an influ-
ence on the stress distribution. The middle support has been fixed in the vertical
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Figure 20 Single-edge-notched beam. Finite element mesh. Measures in [mm].
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Figure 21 Single-edge-notched beam. Load-cmsd diagram.

direction and the outer support has been fixed in vertical and horizontal directions. The
experiments on the small beams with normal weight concrete, maximum aggregate
8 [mm], have been chosen for the numerical simulation, with the material properties
given in Table 3. The analyses have been performed using an advanced solution tech-
nique with a full Newton-Raphson iteration method with an automatic load stepping
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Figure 22 Single-edge-notched beam. Active cracks at final load.

scheme based on external work. The iteration method has been enhanced using a line
search technique. For more details regarding the solution technique, see Feenstra
(1993). The convergence characteristics of the calculations are good, although for the
rotating crack model a number of line searches were necessary. The comparison of the
experimental result and the numerical simulations focuses on the crack-mouth-sliding-
displacement (cmsd) versus the total load which should be considered as a representa-
tive measure of the nonlinear behavior of the structure. The total load-cmsd diagram,
Figure 21, shows a pre-peak behavior which is a little too stiff for all models and a fail-
ure load which is in accordance with the experimental result. The post-peak behavior is
simulated within acceptable boundaries for all models. It appears that the different for-
mulations of the constitutive models do not differ very much. Neither of the models is
capable to predict a genuine separation with a full softening behavior which has been
found in the experiment. An analysis with a discrete crack model, Rots (1988), of a sim-
ilar beam shows a full softening behavior, but the analyses with other smeared crack
models show the same tendency. At peak load the crack has been initiated at the right-
hand-side of the notch with a direction of approximately 45° which has also been
observed in the experiments, Schlangen (1993). At the final load the crack is propagated
through the specimen from the notch to the right-hand-side of the loading platen which
is shown in Figure 22 for the analysis with the Rankine model. Only the active cracks
have been plotted which are defined as the integration points which have an internal
parameter which is larger or equal to 0.5 «,, with x, defined in eq.(15). The crack pat-
tern of the analysis with the rotating crack model is almost equal to the crack pattern of
the Rankine plasticity model. The differences between the models are small and only
perceptible in the final load stage.

4.2 Pull-out of an anchor bolt

The pull-out analysis of an anchor bolt has been proposed by RILEM-committee
TC90-FMA as a round-robin analysis in order to compare the different analytical and
numerical methods. The geometry and material properties of the first proposal for the
round-robin, Elfgren (1990), have been used to simulate the pull-out with the standard
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Figure 23 Pull-out of an anchor bolt. Finite element model. Measures in [mm].

smeared crack models for both the plane-stress and the axisymmetrical case, Feenstra,
Rots and De Borst (1990). The second, revised invitation also concerned the experimen-
tal analysis of the proposed geometry for both the plane-stress and axisymmetrical case
with an embedded depth of 50, 150 and 450 [mm] respectively. In the Stevin Laboratory
at Delft University of Technology experiments have been carried out on a plane-stress
specimen with an embedded depth of 100 [mm], Vervuurt, Schlangen and Van Mier
(1993). These experiments have been used in this study to investigate the behavior of
the Rankine plasticity model and the rotating crack model.
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Figure 24 Pull-out of an anchor bolt. Load - displacement diagram.

Table 4 Material properties pull-out of an anchor bolt.

concrete
Fom 35.0 [N/mm?]
E, 37000 [N/mm?)
v 0.15 =]
Ferm 2.5 [N/mm?*]
Gy 0.09" [Nmm/mm?*]
G, 5.0% [ Nmm/mm?]

1) exponential softening
2) parabolic softening

The finite element discretization is given in Figure 23. Only half of the specimen
has been discretized with 402 six-noded plane-stress triangles with a seven-point inte-
gration. The anchor has been modeled using 13 four-noded plane-stress elements with a
four-point integration. The material properties are given in Table 4.

The results are given as the load versus the displacement of the upper-outer edge of
the anchor head and the crack pattern at different stages of the calculation. The load
displacement diagram is given in Figure 24 for the different constitutive models. Analy-
ses with the composite yield surface show that the influence of the compressive nonlin-
earity on the load-displacement curve is negligible and these diagrams are not shown in
Figure 24. The predicted failure load is approximately 20 % too high when compared
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Figure 25 Pullout of an anchor bolt. Active cracks (a) just before maximum load ; (b)
just after maximum load ; (c) final crack pattern

with the experimental results, but the post-peak behavior is predicted in agreement with
the experimental response. It is remarkable that the failure load is almost equal for both
constitutive models but that the post-peak behavior shows substantial differences. The
rotating crack model results in a load-displacement diagram which is less brittle than the
Rankine plasticity model. The calculations of the rotating crack model have been termi-
nated at an early stage because convergence could no longer be achieved. The failure
mode is a sudden crack propagation which is clearly shown by the crack pattern of the
Rankine plasticity model is shown in Figure 25. Just before the maximum load the
cracks localize in a small region around the anchor head and after the maximum load
the crack propagates horizontally through the specimen which is accompanied with a
decreasing load. When the crack has grown towards the support it branches into two
cracks, one propagating in the direction of the support, and one propagating downwards.
This crack branching has also been observed in the experiments where it is even more
pronounced because the crack pattern in the specimen is nonsymmetric, see Vervuurt,
Schlangen and Van Mier (1993). The crack propagating downwards is the active crack
which can be seen from the displacements plotted in Figure 26 for three different load
stages. This analysis shows that the constitutive models which have been developed are
capable to predict the failure load, the post-peak behavior and the failure mode accurate
enough to be used in the analysis of a design problem which is formulated by RILEM-
committee TC90-FMA as one of the goals.
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Figure 26 Pullout of an anchor bolt. Total displacements. (a) just before maximum
load ; (b) just after maximum load ; (c) at final load.

4.3 Cylinder splitting test

The cylinder splitting test is often used as an indirect test for determining the tensile
strength of concrete. However, the tensile strength which can be derived from this test
is considerably influenced by the boundary conditions and failure is often induced by
compressive softening under the loading platen, see Hannant, Buckley and Croft (1973).
Although the stress state under the loading platen is considered to be triaxial, this exam-
ple has been chosen to analyze the capability of the developed models to predict the fail-
ure mode in a tension-compression test. The geometry of the cylinder splitting test has
been taken from a similar analysis of Saourides and Mazars (1989) who analyzed this
example with a local and nonlocal damage model. Their conclusion was that it is not
possible to obtain a splitting type of failure with a traditional local approach because
damage localizes under the loading area. The fracture-energy based models which will
be used in this study may provide a solution as will be shown in the following analysis.

The specimen which will be analyzed is a cylinder with a length of 160 [mm] and a
cylinder radius of 40 [mm]. Only a quarter of the specimen is discretized because of
symmetry conditions, with 105 six-noded plane-stress elements with a 7-point integra-
tion. The loading platen has been modeled with one 8-noded plane-stress element with
a 9-point integration. The finite element discretization is shown in Figure 27 and the
material properties which have been used are given in Table 5.
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Figure 27 Cylinder splitting test. Finite element mesh.

Table 5 Material properties cylinder splitting test.

concrete
Fom 30.0 [N/mm?*]
E, 37700 [N/mm?*]
v 0.15 -]
Setm 3.0 [N/mm?*]
Gy 0.10" [ Nmm/mm?)]
G, 5.0 [Nmm/mm?]

1) exponential softening
2) parabolic softening

The load versus the displacement of the loading platen is depicted in Figure 28 in
which the influence of the compression softening is clearly shown. If no compression
softening is modeled, the analysis does not resuls in a limit load, but gives a monotoni-
cally increasing load displacement curve. The differences between the Rankine plastic-
ity model and the rotating crack model are negligible which is not surprising because
the crack can be considered as a pure mode-I crack which does not rotate after cracking.

If compression softening is taken into account the situation changes considerably.
The ultimate load is smaller than the ultimate load of the composite yield function
because of the different failure mechanism. The failure mechanism of the rotating crack
model is completely governed by compression softening. On the other hand, a splitting
crack is observed for the composite yield function. The biaxial stress state under the
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Figure 28 Cylinder splitting test. Load - displacement diagram.
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Figure 29 Cylinder splitting test. Principal plastic strain. (a) at maximum load ; (b) at
final load.

loading platen is clearly shown by the principal inelastic strain vectors which are plotted
in Figure 29 at the maximum load and at the final state. At the maximum load the stress
state under the loading platen is mainly mode-I compression with a starting splitting
crack in the middle of the specimen. This crack propagates in the vertical direction
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Figure 30 Cylinder splitting test. Total displacements. (a) at maximum load ; (b) at
final load.

which is attended by a descending load-displacement curve. The total displacements of
the specimen, depicted in Figure 30, show clearly the crack in the middle of the speci-
men and the inelastic deformations under the loading platen. It is clear that the constitu-
tive model which is used to analyze the cylinder splitting test is of utmost importance
for the calculated response. If the nonlinear behavior due to compression softening is
neglected, no limit load will be found, cf. Labbane, Saha and Ting (1993).

5. Modeling of reinforced concrete

The modeling of reinforcement in a finite element method is possible via three ways
which have been used extensively during the last decades. A distributed representation
of the reinforcement is probably the most frequently used method. In this approach the
reinforcement is assumed to be distributed over the concrete element with a particular
orientation angle. In slabs and shells, but also in panels, this method is implemented in a
layered element where some layers represent the reinforcement and it is assumed that a
state of plane-stress exists in each layer. An embedded formulation is often used in con-
nection with iso-parametric elements, such that the displacements of the reinforcing
bars or grids are the same as the displacement of the parent-element. Finally, a discrete
representation of reinforcement is also possible. Uniaxial elements are superimposed to
the elements representing the concrete with rigid connections or with interface elements.
With the latter approach, bond slip between the concrete and the reinforcement can be
modeled explicitly. In the first two approaches it is generally assumed that perfect bond
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exists between concrete and reinforcement. In this study, an embedded formulation of
reinforcement will be used with the assumption of perfect bond between concrete and
reinforcement.

The reinforcement in concrete structures is usually applied in differently orientated
layers of reinforcing grids. Because of the one-dimensional character of these grids, it is
generally not necessary to introduce multiaxial constitutive models for the reinforcing
steel, Chen (1982), and the experimental stress-strain curve for axial loading is idealized
as a uniaxial elasto-plastic constitutive model with work-hardening. The behavior in
compression and tension is considered to be equal because buckling under compressive
forces is prevented by the concrete cover.

5.1 Constitutive model of reinforced concrete

The behavior of reinforced concrete loaded in tension has been considered as the super-
position of a material model for plain concrete, a material model for reinforcement and
an additional stiffness which is referred to as the tension-stiffening component. The
constitutive model for plain concrete, discussed in Chapter 3, has been derived as a frac-
ture energy-based tension-softening model. The amount of fracture energy of a single
crack has been assumed to be dissipated over an equivalent length which is related to
the element size. In reinforced concrete usually a number of cracks develop during the
process of loading until the cracking process stabilizes and no further cracks develop in
the structure. The crack spacing at stabilized cracking is determined mainly by the
amount of reinforcement. It is assumed in this study that the material model for plain
concrete, based on fracture energy, can be applied to reinforced concrete with the total
amount of fracture energy dissipated over the equivalent length. Because the fracture
energy is assumed to be a material parameter, only the average crack spacing has to be
determined, see Chapter 2.

The constitutive model of the reinforcement is assumed to be given by an elasto-
plastic model with a linear-elastic stiffness matrix given by

p,Es 0 0
D, = 0 pEs 0O (45)
0 0 0

in which p,, and p, the reinforcement ratio in the p- and g-direction respectively and E
the Young’s modulus of the reinforcement. The shear stiffness of the reinforcing grid is
assumed to be equal to zero.

In general, bond is assumed between reinforcement and concrete which is of funda-
mental importance for the constitutive model of reinforced concrete. Due to the bond
action a series of cracks will develop in a reinforced member subjected to a tensile load-
ing. The average crack spacing is in general a function of the amount and distribution of
the reinforcement, concrete cover on the reinforcement and the tensile strength of the
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concrete. At a certain load stage the crack spacing will stabilize and a subsequent
increase of the load no longer results in additional cracking. It is observed that also after
stabilized cracking, the cracked reinforced concrete is still capable to carry stresses
between two adjacent cracks which increases the overall stiffness of the structure. This
phenomenon is called tension-stiffening and is related to the direction and properties of
the reinforcement. In this study, the additional stiffness will be modeled with a constitu-
tive model which describes the additional stiffness as a function of the strain in the
direction of the reinforcement as discussed in Chapter 2 with a stiffness matrix given by

E,, 0 0
D;, = 0 E by 0 (46)
o 0 0

in which E, , and E,, the bond stiffness in the p- and g-direction of the grid respec-
tively. The constitutive model for tension-stiffening is in general a function of the rein-
forcement ratio, the diameter of the reinforcement and the average crack spacing.

The shear resistance of cracked reinforced concrete is determined by a combination
of aggregate interlock, dowel action and the axial restraint stiffness of the reinforcement
crossing a crack, see Walraven and Reinhardt (1981), Gambarova (1987), Vecchio and
Nieto (1991). The resulting shear stress-shear strain response of aggregate interlock and
dowel action shows a similar behavior, but in general it is assumed that aggregate inter-
lock dominates over dowel action at small crack widths. The aggregate interlock models
generally result in quite complex formulations even if the models are implemented in
interface elements in which the constitutive relations are described in terms of crack
opening and crack sliding, see e.g Feenstra, de Borst and Rots (1991a, 1991b). Imple-
mentation in a smeared approach, in which average strains and stresses are considered,
is not readily possible because a simple, mathematical model defined in terms of the
strain vector is not available. It is therefore assumed that the shear stiffness of the inter-
action model is equal to zero.

As discussed in Chapter 2, the constitutive model of cracked reinforced concrete
will be given by the superposition of the constitutive models of the plain concrete, the
reinforcement and the interaction between concrete and reinforcement. In this manner,
we have a phenomenological description of the material behavior of a composite mate-
rial by describing the material models of the constituent materials and their mutual
interaction in a separate manner.

5.2 Constitutive model for plain concrete

The constitutive model for plain concrete has been discussed in Chapter 3. It has been
shown that in applications to plain concrete the Rankine plasticity model gives good
results, see Chapter 4. The constitutive model for the tension-softening component of
reinforced concrete is again assumed to be given by either the incremental or the total
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Figure 31 Idealized reinforced panel. Finite element configuration.
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Figure 32 Idealized reinforced panel. Comparison of different concrete models.

formulation. The constitutive models have been applied to an idealized panel proposed
by Crisfield and Wills (1989) in order to determine whether the same conclusion can be
drawn regarding the constitutive model of plain concrete. The analysis concerns a sin-
gle element, dimensions 10 x 10 [mm?] with a thickness of 1 [mm], reinforced with one
layer of a reinforcing grid. The finite element configuration is shown in Figure 31. The
reinforcement ratio in the p-direction is equal to 0.04232 and equal to 0.00768 in the
g-direction. The analysis is a no-tension analysis with linear-elastic behavior in com-
pression which results in a limit analysis with the exact failure load. The material prop-
erties are given in Table 6.
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Table 6 Material properties idealized panel.

concrete

E, 20000 [N/mm?]

1% 0.0 (-]

Fetm 0.0 [N/mm?]
G, 0.0 [Nmm/mm?*]

reinforcement
fo 500 [N/mm?]
E, 200000 (N/mm*]

The panel is loaded in a combined biaxial tension-shear loading with
fu=fyy=2.5u [NImm®] and f, =5.0u [N/mm*] with u the loading parameter
which is equal to one for the exact collapse load which is associated with yielding of the
reinforcement. The results of the analyses is shown in Figure 32, where the loading
parameter is plotted against the x-displacement of the upper-right node of the element.
The comparison of the different formulations of the constitutive model for plain con-
crete shows that the formulation is important even if the tensile strength is equal to zero
and no tension-softening description is used. The interaction between the reinforcement
and the concrete compressive struts after cracking results in different responses. The
fixed crack model shows a collapse load which is too high, irrespective of the magnitude
of the shear retention factor §. The rotating crack model and the Rankine plasticity
model approximate the exact failure load closely.

The choice of the constitutive model for plain concrete can be based on the funda-
mental difference which has been shown with this example. If the fixed crack model is
adopted, the failure load will often be too high which has also been shown before by
Crisfield and Wills (1989) with the analyses of seven reinforced concrete panels tested
by Vecchio and Collins (1982). The rotating crack model on the other hand gives failure
loads which are in better agreement with the experimentally observed collapse loads. A
deficiency of a total formulation, like the rotating crack model, is that a transparent
combination with other nonlinear phenomena is often difficult and an incremental for-
mulation is therefore preferred. The Rankine plasticity model with an incremental for-
mulation shows a behavior which is quite similar to the behavior of the rotating crack
model and can be used to model plain concrete. Because the Rankine plasticity model
has shown to be accurate and results in stable numerical computations, this model will
be used in the remainder of this study.
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5.3 Validation of the tension-stiffening model

The tension-stiffening effect is usually referred to in the literature as the ability to grad-
ually redistribute the load in a structure from concrete to steel under the formation of
primary and secondary cracks. In this study however, the tension-stiffening effect is
only used to define the additional stiffness due to the interaction between concrete and
reinforcement whereas the formation of primary and secondary cracks has been mod-
eled with the constitutive model of plain concrete, the tension-softening model.

The tension-stiffening model has been validated with experiments on reinforced
concrete panels subjected to in-plane shear and normal loading. The loading regime and
the properties of the reinforcement of the experiments are designed such that no rotation
of the principal strain occurs after cracking. Only the model which describes the ten-
sion-stiffening effect is utilized and dowel action is not activated. The panels are
890 x 890 [mm?] with a thickness of 70 [mm], reinforced with two layers of a reinforc-
ing grid. The cover of the reinforcing grids is equal to 6 [mm] for all panels which have
been analyzed. The finite element idealization for the analyses consists of a four-noded
element with four integration points for both the reinforcement and the concrete. The
reinforcement in the panels is represented by the angle  between element x-axis and
main reinforcement p-axis and the reinforcement ratios in p- and g-directions.

The tension-softening of the concrete has been applied with a linear diagram and the
additional stress due to the tension-stiffening effect has been applied with the diagram
given in chapter 2.

The first analyses concern the panels of Bhide and Collins (1987) who tested a
series of thirty-one, uniaxially reinforced concrete panels subjected to various combina-
tions of tension and shear. For the validation of the tension-stiffening model two panels,
panels pb13 and panel pb25, have been selected. Both panels have approximately the
same material properties, but the reinforcement ratio of panel pb25 is twice the rein-
forcement ratio of panel pbl3. The panels are both loaded in uniaxial tension in the
direction of the reinforcement.

Table 7 Material properties panel pb13.

concrete

fom 23.4 [N/mm?]

E. 26000 [N/mm?]

v 0.15 [-]

fct,m 1.85 [N/mmz]
Gy 0.06" [Nmm/mm?]

reinforcement
Sy 414 [N/mm?]
E, 210000 [N/mm*)

1) linear softening
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Figure 33 Influence of tension-stiffening on panel pb13 of Bhide and Collins.

The reinforcement in panel pb13 is applied in two grids with a reinforcement ratio given
by p, =0.01085 and p, = 0.0 and an angle y = 0°. The diameter of the deformed bars
¢, is equal to 6.55 [mm]. The material properties of panel pbl3 are given in Table 7.
The mean compressive strength of the concrete has been taken from the report of Bhide
and Collins (1987) and the other material properties have been derived from this value
with the formulas given in chapter 2. The effective tension area determined by the geo-
metrical properties of the reinforcement is equal to 23.2 [mm] and the average crack
spacing is equal to 100 [mm]. Compared with the experimental stabilized crack spacing
of approximately 111 [mm], the calculated value of the average crack spacing is reason-
ably accurate. The nominal tensile stress-strain diagram of panel pb13 is shown in Fig-
ure 33. The influence of the tension-stiffening component in the constitutive model is
obvious from this diagram. The calculated force at cracking of the panel is too high
which indicates that the tensile strength of the concrete is overestimated. This also
influences the tension-stiffening effect which has been chosen with a value equal to one.

Panel pb25 has been designed to study the effect of the amount of reinforcement and
this panel is the companion specimen of panel pb13. The reinforcement ratio of panel
pb25 is twice the reinforcement ratio of panel pb13, i.e. p, =0.02170 with the same
angle = 0° and a diameter ¢, = 6.59 [mm]. The reinforcement in the q-direction is
again equal to zero. The material properties of panel pb25 are given in Table 8. The
effective tension area determined by the geometrical properties of the reinforcement is
equal to 23.2 [mm] and the average crack spacing equal to 66. 5 [mm]. Compared with
the experimental crack spacing of approximately 81 [mm], the calculated value of the
average crack spacing is quite accurate. The nominal tensile stress-strain diagram of
panel pb25 is shown in Figure 34. It is obvious from this diagram that the tension-
softening component is more dominant for this panel than for panel pbl3.
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Figure 34 Influence of tension-stiffening on panel pb25 of Bhide and Collins.

Table 8 Material properties panel pb25.

concrete

fcm 20.0 [N/mmz]

E. 26000 [N/mm?]

v 0.15 [-]

Setm 1.6 [N/mm?]
G, 0.06" (Nmm/mm®]

reinforcement
fsy 414 [N/mmz]
E, 210000 [N/mm?]

1) linear softening

The influence of the angle between a crack and the reinforcement has been studied
with the analyses of two panels tested by Kollegger (1988). It concerns two panels with
the same material properties and equal reinforcement, but with a different reinforcement
angle y. Panel pk03 has an angle y equal to 0°, whereas panel pk0O4 has an angle 45°.
The material properties are given in Table 9. The reinforcement ratio in p- and g-
direction is equal to 0.0106 with a diameter of 6.5 [mm]. The effective tension area is
equal to 23.1 [mm] and the average crack spacing equal to 100 [mm] for panel pk03
and an average crack spacing equal to 70 [mm] for panel pk0O4 which is in agreement
with the experimental value of the stabilized crack spacing. The nominal stress-strain
response in the x-direction of panel pk03 has been depicted in Figure 35 and that of
panel pkO4 is shown in Figure 36. The assumption that the tension-stiffening compo-
nent acts in the direction of reinforcement is supported by the analyses of the panels
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Table 9  Material properties panel pk0O3 and pk04.

concrete
fom 20.0 [N/mm?]
E, 26000 [N/mm?]
v 0.15 -]
ferm 1.6 [N/mm?]
G, 0.06" [Nmm/mm?]
reinforcement
f sy 700 [N / mmz]
E, 210000 [N/mm?]
1) linear softening
— 10.0
S
..E_. 8.0 4
bQ 6.0 tension-stiffening included
4.0 4 only tension-softening
2.0 -
e experiment
0 ¥ T T 1
0 0.005 0.010 0.015
Exx [—]

Figure 35 Influence of tension-stiffening on panel pk03 of Kollegger.

which show that the calculated behavior is close to the experimental behavior. The con-
clusion of Kollegger and Mehlhorn (1990b) that the influence of the angle between
crack and reinforcement is negligible for the tension-stiffening model is confirmed by
these analyses.

Finally, panel pv4 of Vecchio and Collins (1982) loaded in pure shear has been ana-
lyzed. Because of the isotropic reinforcement, the directions of the principal strain vec-
tor do not rotate and the behavior is completely determined by the tension-softening and
tension-stiffening models. This panel is reinforced with two layers with a reinforcement
ratio given by p, = p, = 0.01056 with a diameter ¢, = ¢, =3.45 [mm]. The angle y
between the reinforcement and the element axis is equal to 0°. The material properties

48



10.0 -

S
E 8.0 1
btj 6.0 4 tension-stiffening included
4.0 1 only tension-softening
2.0 -
e experiment
O T T T 1
0 0.005 0.010 0.015

€ xx [_]
Figure 36 Influence of tension-stiffening on panel pk04 of Kollegger.
of panel pv4 are given in Table 10. The effective tension area is equal to 19.3 [mm] and
the average crack spacing equal to 44.8 [mm]. The nominal shear stress-strain strain

response of panel pv4 is shown in Figure 37. The behavior is in close agreement with
the experimental behavior which shows yielding of the reinforcement.

Table 10  Material properties panel pv4.

concrete

Fom 26.0 [N/mm?]

E, 30000 [N/mm?*]

v 0.15 -]

Fetm 2.0 [N/mm?]
Gy 0.06" [ Nmm/mm?]

reinforcement
f.vy 242 [N/mmz]
E 210000 [N/mm?*]

5

1) linear softening
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Figure 37 Influence of tension-stiffening on panel pv4 of Vecchio and Collins.

The next analyses will concern reinforced panels of Vecchio and Collins (1982)
which are anisotropically reinforced. Due to this anisotropy, the direction of the princi-
pal strain will change after crack initiation. The degree of anisotropy is defined by the
ratio of the potential yield loads of the reinforcement, Crisfield and Wills (1989), as

Pp Foyp 47)
pq fsy,q

r

The analyses are performed with a single finite element configuration described previ-
ously and all panels are loaded in pure shear.

—_ 5.0 1
5
E 4.0 1
2 ®
° 3.0 4
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1.0 4
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0 : T . T " J
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Figure 38 Influence of tension-stiffening on panel pv11 of Vecchio and Collins.
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Table 11 Material properties panel pvl1I.

concrete

fom 16.0 [N/mm?]

E. 25000 [N/mm?)

v 0.15 [-]

. 1.2 [N/mm?]
G, 0.06" [ Nmm/mm?)

reinforcement
foy 235 [N/mm?]
E, 210000 [N/mm?]

1) linear softening

The first analysis concerns panel pvll with a reinforcement ratio in the p-direction
equal to 0.01785 with a diameter of 6.35 [mm] and in the g-direction equal to 0. 01306
with a diameter of 5.44 [mm]. This results in an anisotropy factor of the reinforcement
o, =1.37. The reinforcement properties result in an effective tension area of
22.9 [mm] in the p-direction and 21.8 [mm] in the g-direction. The average crack
spacing is equal to 51.5 [mm] which is smaller than the experimentally observed crack
spacing of 75 — 100 [mm]. The material properties are given in Table 11. The nominal
shear stress-shear strain response is given in Figure 38. The agreement between analy-
sis and experiment is reasonable if the tension-stiffening effect is taken into account.
The tensile strength of 1.2 [N/mm?] which has been estimated by eq.(11) is lower than
the experimentally observed tensile strength of approximately 1.6 [N/mm?]. It is obvi-
ous in this case, with an anisotropy factor @, = 1. 37 that ignoring the shear resistance of
the reinforced concrete is permitted.

The next panel concerns panel pv10 with an anisotropy factor @, = 1.79. The rein-
forcement ratio in the p-direction is equal to 0. 01785 with a diameter of 6. 35 [mm] and
in the g-direction equal to 0. 00999 with a diameter of 4.70 [mm] which results in an
effective tension area of 22.9 [mm] in the p-direction and 20. 8 [mm] in the g-direction.
The average crack spacing is equal to 51.4 [mm] which is in agreement with the experi-
mentally observed crack spacing of 50 — 75 [mm]. The material properties are given in
Table 12. The nominal shear stress-shear strain response is given in Figure 39. The
comparison of the analysis with the experiment shows that the tensile strength is again
estimated too low, but that the resemblance is reasonable. The influence of the tension-
stiffening component is small because the amount of ultimate crack strain is almost
equal to the failure strain of the element.
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Figure 39 Influence of tension-stiffening on panel pv10 of Vecchio and Collins.

Table 12 Material properties panel pv10.

concrete

Sem 14.4 [N/mm*]

E, 24000 [N/mm?]

v 0.15 -]

Fetm 1.0 [N/mm*]
Gy 0.06" [Nmm/mmz]

reinforcement
Sy 276 [N/mm?
E 210000 [N/mm?]

s

1) linear softening

The next panel concerns panel pv19 where the anisotropy factor @, is equal to 3.83
which is large, considering the pure shear loading. The reinforcement is applied in two
layers of reinforcing grids with a reinforcement ratio in the p-direction equal to
0.01785 with a diameter of 6.35 [mm] and in the g-direction equal to 0.00713 with a
diameter of 4.01 [mm]. These properties result in an effective tension area of
22.9 [mm). The average crack spacing is equal to 51.4 [mm] which is in agreement
with the experimentally observed crack spacing of 50 — 75 [mm]. The yield stress of
the reinforcing steel is different in the p- and g-directions, see Table 13. The nominal
shear stress-shear strain response given in Figure 40 shows that the agreement with the
experimental response is quite accurate, considering that the shear resistance is

neglected.
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Figure 40 Influence of tension-stiffening on panel pv19 of Vecchio and Collins.

Table 13 Material properties panel pv19.

concrete

Fom 19.0 [N/mm?]

E, 26000 [N/mm?]

v 0.15 [-]

Fotm 1.5 [N/mm?)
Gy 0.06" [Nmmimm?*]

reinforcement

Fop 458 [N/mm?]
Fova 299 [N/mm*]

E, 210000 [N/mm?]

1) linear softening

The final panel which will be analyzed is panel pv12 which has a large anisotropy
factor w, = 6.98. This large anisotropy factor produces a significant change in the prin-
cipal strain directions. The reinforcement is applied in two layers of reinforcing grids
with a reinforcement ratio in the p-direction equal to 0.01785 with a diameter of
6.35 [mm] and in the g-direction equal to 0.00446 with a diameter of 3.18 [mm].
These properties result in an effective tension area of 22.4 [mm]. The average crack
spacing is equal to 51.4 [mm] which is in agreement with the experimentally observed
crack spacing of 50 — 75 [mm]. The yield stress of the reinforcing steel is different in
the p- and g-direction, which are given in Table 14.
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Figure 41 Influence of tension-stiffening on panel pv12 of Vecchio and Collins.

Table 14  Material properties panel pv12.

concrete

Sem 16.0 [N/mm?)

E, 25000 [N/mm?)

v 0.15 -]

Fetm 1.2 [N/mm?)
G, 0.06" [Nmm/mm?)

reinforcement

fop 469 [N/mm?]
fova 269 [N/mm’]

E, 210000 [N/mm*]

1) linear softening

The nominal shear stress-shear strain response is given in Figure 41. It is clear from the
analysis of panel pv12 that the shear resistance of the cracked reinforced concrete
becomes more important if the directions of the principal strain vector change signifi-
cantly. However the ultimate failure load is not affected if the failure mode is governed
by yielding of the reinforcement.

It is concluded that neglecting the shear resistance of the cracked reinforced con-
crete is allowed as long as the anisotropy of the reinforcement is less than five and the
loading is such that rotation of the principal directions can be expected. In cases where
the structure is reinforced only in one direction, the Rankine plasticity model should be
used with care, because the analysis might show a much too brittle response due to con-
tinuously rotation of the principal stress.
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6. Application to reinforced concrete

The previous chapters have been addressed the two major problem areas in the model-
ing of reinforced structures, i.e. the development of a numerically stable model which
deals with the biaxial stress states and the rational modeling of the tension-stiffening
concept. In this chapter, two typical engineering problems will be presented which show
the range of application of the developed models. The first example concerns the analy-
ses of two deep beams without shear reinforcement which are designed to fail in com-
pression. The proper modeling of the biaxial stress state is important for these type of
structures. The second example concerns the analyses of shear wall panels in which
both the biaxial stress state problems and the tension-stiffening problems will be
encountered.

6.1 Analysis of deep beams

The analysis of deep beams is usually performed using an approach in which the struc-
ture is modeled using compressive struts and tensile ties. The experimental research pro-
gram of Lehwalter (1988) was mainly concerned with the carrying-capacity of the com-
pressive struts in this truss-model approach. The program consisted of two series of
tests, the first series consisting of deep beams without shear reinforcement and the sec-
ond series consisting of deep beam with shear reinforcement. The beams have a dense
reinforced layer at the bottom of the beams which is designed such that the beams fail
due to compressive failure without yielding of the reinforcement. Two beams of the first
series have been selected, beam v023 with a depth over span ratio of 0.5, and beam
v121 with a depth over span ratio of 1. 0. Both beams have a thickness of 250 [mm].

The first analysis concerns beam v023 with a depth of 360 [mm] and a span of
720 [mm]. Only a half of the specimen has been modeled using 400 four-noded plane-
stress elements with a four-point integration scheme. The reinforcement with a total area
A, =1020 [mm®] has been modeled using embedded bar elements. The developed
model for the reinforced concrete has not been used in this analysis since it is believed
that the concrete-reinforcement interaction does nct have a large influence on the ulti-
mate failure load of the structure. These examples have been selected to indicate the
importance of the modeling of the biaxial stress state. The support platen has been
modeled with eight four-noded plane-stress elements also with a four-point integration
scheme. The finite element mesh is shown in Figure 42 and the material properties are
given in Table 15.

The vertical displacement of the loading platen has been plotted against the load in
Figure 43 in which the influence of compressive softening on the structural behavior is
evident. If only cracking is taken into account, the analysis clearly shows first cracking
and finally yielding of the reinforcement. The analysis with a composite yield surface
shows that the nonlinear compressive behavior under the loading platen dominates the
structural response.
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Figure 42 Deep beam v023 Lehwalter. Finite element mesh. Measures in [mm].

Table 15 Material properties deep beam v023.

concrete

Fom 20.0 [N/mm*]

E, 30000 [N/mm*]

v 0.15 (-]

Setm 2.0 [N/mm?]
G, 0.10" [ Nmm/mm?]
G, 10.0? [Nmm/mm?®]

reinforcement
fo 420 - 500" [N/mm?]
E, 210000 [N/mm?]

1) exponential softening
2) parabolic softening
3) hardening of steel with £, = 0. 079 [-]

56



only cracking

1250 -

g 1000 4
: experimental ultimate load
3
< 7504 composite yield function

500 |

250 4

O L L] T 1)
0 0.5 1.0 1.5 2.0

displacement under loading platen [mm]

Figure 43 Deep beam v023 Lehwalter. Load - displacement diagram.
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Figure 44 Deep beam v023 Lehwalter. Difference in the displacement of the midspan
top and bottom of the beam.

The failure load which has been obtained in the analysis with a composite yield surface
is in good agreement with the experimental failure load. The experimental load-
deformation response has not been plotted because the measured response was inaccu-
rate due to deformation of the supports, see Lehwalter (1988) and Walraven (1993).
Only the experimental failure load has been indicated in Figure 43. The crack patterns
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Figure 46 Deep beam v023 Lehwalter. Compressive principal plastic strain. (a) at
maximum load ; (b) at final load

which have been obtained with the composite yield surface are plotted in Figure 45.
The distributed crack pattern around the reinforced area localizes in a dominant vertical
crack. At a later stage the diagonal, densely cracked region develops. The crack pattern
at the final stage shows that the diagonal cracks are closing while a vertical crack starts
to develop above the support which has also been observed in the experiment. The com-
pressive principal inelastic strain vectors depicted in Figure 46 shows that the failure
mode is a local, compressive type of failure due to nonlinear compressive behavior.
This is also clear from Figure 44 in which the difference between the displacement of
the top and bottom at the midspan of the beam has been plotted. The load-displacement
curve shows a monotonically increasing behavior, whereas the load-displacement curve
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Figure 47 Deep beam v121 Lehwalter. Finite element mesh. Measures in [mm].

of the loading platen, depicted in Figure 43 shows a snap-back behavior® The structure
unloads at the final stage, but the difference between the displacements under the load-
ing platen and the bottom of the beam shows that we have an increasing deformation
under the loading platen. The analysis of beam v023 shows that the behavior of the
beam is governed by bending cracks and compression-shear cracks in the pre-peak
regime. The ultimate failure mechanism is dominated by compressive softening under
the loading platen, which results in a very brittle failure mechanism which is indicated
by the snap-back in the load-displacement diagram. If only cracking is modeled, the
ultimate failure mechanism is dominated by yielding of the reinforcement with an over-
estimation of the ultimate load with approximately a factor equal to 2, and results in a
too ductile failure mechanism.

The second analysis concerns beam v121 with a depth of 930 [mm] and a span of
930 [mm]. Only half of the structure has been modeled using 220 four-noded plane-
stress elements with a four-point integration scheme. The reinforcement has been mod-
eled using embedded bar elements. The support platens have been modeled with four
four-noded plane-stress elements also with a four-point integration scheme. The finite
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Figure 48 Deep beam v121 Lehwalter. Load - displacement diagram.
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Figure 49 Deep beam v121 Lehwalter. Difference in the displacement of the midspan
top and bottom of the beam.

element mesh is depicted in Figure 47, and the material properties are equal to the mate-
rial properties of beam v023 which have been given in Table 15. Again, the vertical dis-
placement of the loading platen has been plotted against the applied load in Figure 48 in
which the influence of compressive softening on the structural behavior is even more
evident than for the previous structure. If only cracking is taken into account, the analy-
sis shows a decrease in the stiffness due to cracking and finally yielding of the
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Figure 50 Deep beam v121 Lehwalter. Crack pattern (a) at maximum load ; (b) at final
load

reinforcement. The analysis with a composite yield surface shows that the nonlinear
compressive behavior under the loading platen results in a large decrease of the maxi-
mum load and that it is important to incorporate compressive softening in order to accu-
rately predict the failure load of these types of deep beams. The calculated failure load
is in good agreement with the experimental failure load which have been plotted in Fig-
ure 48. Again, only the maximum experimental failure load has been plotted, since the
load-deflection curve which has been measured is inaccurate because of displacements
of the supports. The difference between the displacement of the loading platen and the
deflection of the midspan of the beam is shown in Figure 49. The calculated crack pat-
tern which is shown in Figure 50, indicates that the structure is mainly subjected to a
compression-shear loading, because the bending cracks are less dominant than in the
previous structure. At the maximum load we observe some small bending cracks in the
middle of the structure with a dominant shear-type crack pattern in the compressive
strut. The failure mode is governed by the compressive softening under the loading
platen which is shown in Figure 51. This local failure mechanism causes an unloading
of the structure which has also been observed in the previous example.

The two analyses of the deep beams show the major influence of compressive soft-
ening on the structural failure mechanism.
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Figure 51 Deep beam v121 Lehwalter. Compressive principal plastic strain. (a) at
maximum load ; (b) at final load

6.2 Analysis of shear wall panels

The analysis of shear wall panels is a good example of the possible application of the
developed models. The stress state in the panels can be considered to be in tension-
compression. The panels are usually reinforced by a reinforcing grid which makes the
examples also a good indicator for the influence of the tension-stiffening on the behav-
ior of the panels. The panels which will be presented in this study have been tested at
the E.T.H. Ziirich by Maier and Thiirlimann (1985) and have been analyzed before with
the finite element package DIANA by Wang, Van der Vorm and Blaauwendraad (1990).
The constitutive model which has been used in that study is a combination of a fixed
crack model to describe the tensile stress state and a Mohr-Coulomb plasticity model to
describe the compressive stress states, see for details about this constitutive model Van
der Vorm (1988). However, the combination of cracking and plasticity resulted in con-
vergence problems if a large region existed in which both the cracking and the plasticity
model became active. These numerical problems were solved by defining two areas in
which either only the cracking model or only the plasticity model could become active.
The solutions which were obtained with this approach are in good agreement with the
experimental results which indicates that the method is rather effective. The arbitrari-
ness of defining the regions a-priori is a major draw-back of this method and the analy-
ses with the combined yield surface presented here will show that the convergence prob-
lems are avoided if a stable algorithm is used to describe the constitutive behavior. The
experimental program of Maier and Thiirlimann (1986), concerned a series of 10 shear
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Figure 53 Finite element discretization panels Maier and Thiirlimann (1985). a) pan-
els S1 and S2 ; b) panels S4 and S10

wall panels with flanges and panels without flanges. The panels are all loaded initially
by a vertical compressive force, and then loaded by a horizontal force until the experi-
ment became unstable and the failure load had been reached. The experimental set-up is
shown in Figure 52, with the panels supported on a base block and loaded through a
thick top slab.
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Table 16  Material properties panels Maier and Thiirlimann (1985).

concrete

E. 30000 [N/mm?]

v 0.15 [-]

Form 2.2 [N/mm*]
Gy 0.07" [Nmm/mm?)
G, 50.0% [Nmm/mm?]

reinforcement
fo 574 — 764 [N/mm?*]
E, 200000 [N/mm?]

1) linear softening
2) parabolic softening
3) hardening of steel with e,, =24.6 107 [-]

Four panels from the series, S1, S2, S4 and S10, have been analyzed with the com-
posite plasticity model and the influence of the tension-stiffening component on the
behavior has been examined. The material properties have been averaged from the
experimental data of the four panels provided by Thiirlimann and Maier (1986) with a
reduction of the compressive strength of 20 %. The material properties which have
been used in the analyses are given in Table 16. The material properties have been aver-
aged in order to simulate the behavior of the panels in a qualitative manner. In this way,
it is better possible to study the influence of the different reinforcement ratio, initial ver-
tical stress and geometry. The reinforcement is applied by reinforcing grids in two
directions with a diameter of 8 [mm] and a clear cover of 10 [mm]. The reinforcement
ratios and the initial vertical force are given in Table 17.

Table 17  Reinforcement and vertical load of panels Maier and Thiirlimann (1985).

Panel pe [107°)  p, [107]  pp [107]  F, [kN]
S1 10.3 11.6 11.6 —433
S2 10.3 11.6 11.6 —-1653
S4 10.3 10.5 10.5 -262
S10 9.8 10.0 57.1Y -262

1) additional reinforcement in tension area over 197 [mm]

The finite element discretizations of the panels are depicted in Figure 53 with quadratic
plane-stress elements with a nine-point Gaussian integration for both the reinforcement
and the element. The reinforcement has been applied in two layers of a reinforcing grid.
The top slab has been modeled with linear-elastic elements without reinforcement,
whereas the supporting block has been replaced by fixed supports in the x- and y-
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direction. The additional reinforcement in panel S10 has not been applied in an area of
240 [mm] as in the experiments, but has been applied in the first element at the tension
side, i.e. over a length of 197 [mm].

The horizontal and vertical load have been applied as a uniformly distributed ele-
ment load as indicated in Figure 53. The horizontal displacement u, of the top slab has
been monitored and compared with the experimental load-displacement curves. Ini-
tially, the solution technique with the constrained Newton-Raphson iteration with line
searches has been applied to analyze the panels. It happened that it was not possible to
achieve converged solutions after the maximum load and therefore the indirect displace-
ment control method without line searches has been used to analyze these panels, see
Feenstra (1993). The displacement in the horizontal direction u, has been chosen as the
active degree-of-freedom with load steps of approximately 0.2 [mm]. With this solution
technique, converged solutions could be obtained in the complete loading regime.

1000 -
tension-stiffening included
only tension-softening

Fy [kN]

500 -

e experiment

O T 1
0.0 20 40

horizontal displacement u, [mm]

Figure 54 Panel S1. Load - displacement diagram.

The first panel which will be presented is a panel with flanges which will be denoted
as panel S1. This panel is subjected to an initial vertical load of
433 [kN]=2.5 [N/mm?] which results in an initial horizontal displacement of
0.06 [mm] in the experiment. The calculated initial displacement is equal to
—80 - 107 [mm] which indicates a possible eccentricity in the experimental set-up. After
the initial vertical load, the horizontal load is applied with indirect displacement control.
The load-displacement diagram of panel S1 is shown in Figure 54, which shows a rea-
sonable agreement between experimental and calculated response. The influence of the
tension-stiffening component on the load-displacement diagram is small, but inclusion
of the tension-stiffening avoids some numerical difficulties which are related to local
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Figure 55 Panel S1. Results of the analysis at a displacement of 10 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.
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Figure 56 Panel S1. Results of the analysis at a displacement of 30 [mm)]. (a) active
cracks and plastic points ; (b) principal stresses.

maxima due to crack localization in the pre-peak regime. The results of the analysis will
be presented by plotting the active cracks with a line and the integration points which
are in a compressive plastic state are depicted with a triangle. The size of the triangle is
proportional with the magnitude of the internal parameter. Furthermore, the principal
stresses are depicted which are in general compressive. The active cracks are defined as
those cracks for which the internal parameter x is equal or greater than 0.5 x,. The
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results for panel S1 at a displacement of the top slab of 10 [mm] are shown in Figure 55.
The panel is densely cracked with plastic points in the bottom-left corner of the panel.
The concrete in the bottom-right corner does not transfer any stress anymore as can be
seen from Figure 55(b). The load carrying mechanism through a compressive strut can
clearly be observed from the principal stresses. The results of panel S1 at the final dis-
placement of 30 [mm] show the failure mechanism which is governed by compressive
softening of the concrete and yielding of the reinforcing steel both in tension and com-
pression, see Figure 56. In the ultimate state, the concrete in the bottom-left corner
transfers no stress anymore, which is in agreement with the experimentally observed
failure mechanism where the concrete was crushed in the bottom-left corner of the panel
and in the flange at the compression side.

tension-stiffening included

1000 -
2
W

500 A

only tension-softening
e experiment
0 . .
0.0 10 20

horizontal displacement u;, [mm)

Figure 57 Panel S2. Load - displacement diagram.

Panel S2 is identical with the previous panel, but the initial vertical load is approxi-
mately four times the initial stress in panel S1, which increases the ultimate load of the
structure but decreases the ductility of the panel dramatically, see Figure 57. The agree-
ment between the ultimate load of the experiment and the calculated maximum load is
good. The influence of the additional stiffness caused by the inclusion of the tension-
stiffening component is small. The experimental initial displacement of the experiment
is quite large, which could not be simulated. The experimental failure mechanism was
rather explosive and caused a complete loss of load-carrying capacity which can be
explained by the brittle behavior of the panel after maximum load, see Figure 57. The
results of the analysis at a displacement u, equal to 5 [mm], see Figure 58, show that the
panel is heavily cracked with plastic points in the bottom-left corner of the panel and in
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Figure 59 Panel S2. Results of the analysis at a displacement of 15 [mm]. (a) active

cracks and plastic points ; (b) principal stresses.

the compressive flange. The results of panel S2 at the ultimate displacement u,, of

15 [mm] are shown in Figure 59 in which the redistribution of internal forces in the
panel can clearly be observed. The complete loss of stiffness in the bottom of the panel

can be seen from Figure 59 which is combined with yielding of the reinforcement in

compression. The reinforcement in the tension flange also yields, but this is less domi-

nant.
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Figure 60 Panel S4. Load - displacement diagram.
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Figure 61 Panel S4. Results of the analysis at a displacement of 5 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.

Panel S4, which will be analyzed next, is the equivalent of panel S1 without flanges.
The initial vertical force of 262 [kN] results in approximately the same vertical stresses
as in panel S1. The load-displacement diagram is given in Figure 59 which again shows
a reasonable agreement between the ultimate loads of the experiment and of the analy-
sis. The influence of the tension-stiffening component is more dominant and results in a
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Figure 62 Panel S4. Results of the analysis at a displacement of 20 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.

more stable numerical solution than if the tension-stiffening component is neglected. In
this case convergence could only be achieved with small steps in the ascending branch
until a stabilized crack pattern has been achieved. The panel behaves in a rather ductile
manner after peak load which has also been observed in the experiment where the hori-
zontal displacement could be increased approximately 30 % after the ultimate load had
been reached. The results of the analysis are shown in Figures 61 and 62 at a horizontal
displacement u,;, of 5 [mm] and 20 [mm] respectively. The experimentally observed
failure mode is related to crushing of the concrete in a region in the bottom-left part of
the panel. This failure mechanism can also be observed from Figure 62(a) and (b),
because the principal stresses at the bottom-left corner of the panel are almost reduced
to zero.

The final panel which will be analyzed, is a panel with a "hidden tensile flange". In
the tension side of the panel, additional reinforcement has been applied which increases
the ultimate load, compared with panel S4, but results in a less ductile behavior, see Fig-
ure 63. The agreement between the experimental and calculated ultimate load is quite
reasonable, but the calculated initial stiffness exceeds the experimental initial stiffness
with approximately a factor equal to two. Also the displacement at the failure load is
too small compared with the experimental displacement. The results of the analysis of
panel S10, given in Figures 64 and 65, show the differences with the results of panel S4,
mainly in the post-peak regime. The active cracks and plastic points as well as the
direction of the principal compressive strut are almost equal for both panel S4 and S10,
compare Figure 61 and Figure 64. The results at a displacement of 20 [mm] show a con-
siderable different behavior between panel S4 and panel S10. The part of panel S10 in
which the stresses are reduced to zero is much larger than the region in panel S4 which
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Figure 64 Panel S10. Results of the analysis at a displacement of 5 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.

has also been observed in the experiments, see Figure 62 and 65.

In conclusion, it has been shown that the agreement between the experimental and
numerical results is good, and that the experimental failure mechanism can be simulated
with the composite plasticity model. The influence of the modeling of the tension-
stiffening component on the load-displacement curve is in general small, but inclusion
of it can result in a more stable iterative procedure in the pre-peak regime.
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Figure 65 Panel S10. Results of the analysis at a displacement of 20 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.

7. Summary and concluding remarks

The structural engineer more and more needs reliable numerical tools to analyze the
post-failure behavior of structures in order to assess the structural safety. In general, a
reliable numerical tool consists of an accurate material description in combination with
a robust solution strategy. In this study an attempt has been made to provide such a tool
for the analyses of reinforced concrete structures.

A material model for plain and reinforced concrete in a plane-stress situation has
been discussed. It is assumed that the failure mechanism of concrete loaded in tension
and compression is governed by crack growth at the micro-level. Furthermore it is
assumed that the internal damage caused by these micro-cracks can be modeled using
internal parameters which are related to a fracture energy in tension and to a fracture
energy in compression. The material properties have been estimated using CEB-FIP
recommendations which are based on the compressive strength of the concrete. The
comparisons between numerical analyses with material properties based on these rec-
ommendations and experiments show that estimated material properties are adequate.
The biaxial behavior of concrete is assumed to be governed by the failure surface of
Kupfer and Gerstle with a tension-softening and a compression-softening constitutive
behavior.

The mechanical response of reinforced concrete is assumed to be given by a super-
position of the elasto-plastic behavior of the reinforcement, the tension-softening behav-
ior of the plain concrete and an additional stiffness due the interaction between concrete
and reinforcement. The total amount of fracture energy due to distributed cracking is
assessed using the average crack spacing based on CEB-FIP recommendations. For the
biaxial behavior of reinforced concrete the biaxial loaded reinforced panels of Kollegger
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and Mehlhorn have been used. It is not obvious from these experiments that the com-
pressive strength should be reduced as a function of lateral cracking, since a constant
reduction can be observed. This phenomenon is possibly a result of the size effect and
the influence of different boundary conditions in the standard compression test and the
actual experiment.

The constitutive model of plain concrete can be formulated in an incremental fash-
ion or within a total strain concept. The rotating crack model falls within the latter cate-
gory. In the former group of models, two fracture energy-based plasticity models have
been presented, the Rankine plasticity model and a composite yield function which gov-
erns the entire range of biaxial stress states. The models have been compared with a
fundamental tension-shear model problem which indicates that the constitutive behavior
of the Rankine plasticity model and the rotating crack model shows much resemblance.
The models have been applied to different structures and a comparison between the
numerical and experimental results indicates that the most promising material model for
concrete is the Rankine plasticity model. Application of the composite plasticity model
to reinforced concrete structures in which biaxial stress states are prominent, shows that
the composite plasticity model results in a stable and accurate procedure. The entire pre-
and post-failure regime can be traced in a stable manner, which gives a good impression
of the failure characteristics of these type of structures.
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