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Abstract

Thin-walled steel members are sensitive to local buckling and may fail by the develop-
ment of local plastic mechanisms. In the literature many applications of (generalized)
yield line theory to the analysis of these mechanisms are described. Different
approaches and the validity of these approaches are discussed.

Keywords: plasticity, limit analysis, upper bound theory, yield line theory, generalized
yield line, yield surface, mechanism.



Preface

The work reported in this paper is part of the research project “Web crippling of cold-
formed steel members”, which is performed at the Eindhoven University of Tech-
nology, in cooperation with Delft University of Technology, TNO-IBBC and Cornell
University (USA). Web crippling is the localized instability failure of the web of a cold-
formed steel flexural member caused by the application of a concentrated load on the
member. This paper was written to provide the necessary background information for
the modeling of the web crippling behavior by yield line methods. These methods, as
described in this paper, are not specifically related to the web crippling problem, but are
of general interest for the analysis of thin-walled steel structures. The application of the
yield line methods described in this paper to the web crippling problem will be given in
a Ph.D. thesis on web crippling.



Yield line analysis of post-collapse behavior
of thin-walled steel members

1 Introduction

The purpose of this report is to describe yield line methods which can be used for the
analysis of the post-yield or post-collapse load-deformation behavior of thin-walled
steel members. This post-collapse behavior is important because it provides insight into
the ductility of the structure, and it can be used to calculate a rough estimate of the
failure load of the member.

To explain how the post-collapse behavior of a member can be used to estimate the
failure load, the load-deformation behavior of a thin-walled steel member subjected to
an increasing load will be considered. As long as the load and deformations are small
the steel wil behave elastically and the load-deformation behavior of the structure can
be calculated from the theory of elasticity. This behavior can be represented as an
elastic loading curve in a load-deformation diagram (see Fig. 1). With increasing load,
the steel will start to yield locally. The areas in which yielding occurs will expand until
afailure mechanism develops. The final process of collapse can be analyzed by applying
rigid-plastic theory to this (yield line) mechanism. The post-collapse behavior of the
member can be represented as a plastic unloading curve in the load-deformation
diagram. The failure load of the member can be estimated by determining the point of
intersection of the elastic loading and the plastic unloading curves. This is called the
“cut-off” strength. In principle, this estimate will be an upper bound for the exact failure
load because the actual load-deformation curve will start to deviate from the elastic

elastic loading curve
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Fig. 1. A general load-deformation diagram.



loading curve at first yield and will coincide with the plastic unloading curve only after
the formation of a complete failure mechanism, that is, after failure. This failure load
prediction may be accurate enough for engineering purposes and provides an insight
into the parameters determining the failure load of the member. A good example of an
application of the method explained above can be found in a paper by Narayanan and
Chow [14].

As mentioned before, the purpose of this paper is to discuss yield line methods for the
analysis of the load-deformation behavior of thin-walled steel members. All these
methods are derived from classical yield line theory, which is an upper bound limit
analysis technique for the calculation of limit loads of reinforced concrete plates loaded
by forces perpendicular to the plate. This paper therefore starts with a short summary
of the theorems of limit analysis and classical yield line theory in chapters 2 and 3,
respectively.

The yield line theory used to analyze the load-deformation behavior of thin-walled
steel members is called generalized yield line theory. In order to adapt classical yield
line theory for this purpose two points have to be considered. First, limit analysis was
developed to calculate limit loads, not to calculate load-deformation behavior of
structures. Second, an appropriate yield criterion has to be formulated. These two
aspects of generalized yield line theory are discussed in chapter 4. Also in chapter 4, the
expressions for the fully plastic moment, normal force and shear force in a yield line are
derived based on the Von Mises yield surface, because the correct expressions seem not
to be generally known. Finally, the limitations on the validity of generalized yield line
theory are described.

In the literature many applications of generalized yield line theory are described. An
extensive summary of rigid-plastic formulations for plates, including yield line
formulations, was given by Dean [4]. Roughly speaking, the generalized yield line
formulations can be divided into the same methods as used in classical yield line theory,
namely work methods and equilibrium methods. However, in generalized yield line
theory these methods are not always strictly followed; often a more or less intuitive
approach is used. In chapters 5, 6 and 7, the work methods, equilibrium methods and
intuitive methods are explained, respectively. In chapter 8 some aspects of yield line
theory are discussed. These aspects include moving yield lines, curved yield lines and
the determination of yield line patterns.

In chapter 9, the most important characteristics of the generalized yield line theory are
summarized. Most of these characteristics were described in the literature already, but
scattered over many references.

2 Limit analysis

Limit analysis is concerned with the determination of the limit state of incipient un-
restrained plastic flow in a structure. There are two different approaches to calculate
limit loads, namely a static or lower bound approach and a kinematic or upper bound
approach.



In the static approach one tries to find a statically admissible stress field throughout the
structure. This stress field has to satisfy the local equilibrium equations, the stress
boundary conditions and the yield inequality. The yield inequality requires that at no
point in the structure, the reference stress exceeds the yield strength. According to the
static or lower bound theorem of limit analysis, a load corresponding to any statically
admissible stress field is smaller thb~n or at most equal to the exact limit load.
In the kinematic approach one tries to define a kinematically admissible mechanism,
such as a yield line mechanism, and estimates the limit load by equating the rate of
energy dissipated in plastic flow to the rate of work done by the external forces. Accord-
ing to the kinematic or upper bound theorem of limit analysis, a load corresponding to
any kinematically admissible mechanism is larger than or at least equal to the limit load.
Combining the two theorems of limit analysis, it can easily be seen that a load corre-
sponding simultaneously to a statically admissible stress field and a kinematically admissible
mechanism is equal to the exact limit load. This will be called a complete solution.
Because this paper concentrates on upper bound limit analysis, the procedure for a
general upper bound analysis will be discussed in more detail. Upper bound limit
analysis consists of the following steps:
1. Choose a velocity field describing a kinematically admissible mechanism.
2. Determine the (generalized) strain rates.
3. Determine the corresponding (generalized) stresses by using a yield surface and
applying the normality rule.
4. Calculate an upper bound for the limit load by equating the internal rate of energy
dissipation to the rate of external work by the applied forces.

3 C(lassical yield line theory

Classical yield line theory is an upper bound limit analysis technique for determining
the ultimate load of reinforced concrete slabs loaded by forces perpendicular to the
slab. An extensive discussion of this method was given by Jones and Wood [7]. In the
past, it was thought that yield line theory was not fully consistent with limit analysis,
because of the different yield conditions used in these two theories. Braestrup [2]
however showed that the yield conditions used in classical yield line theory correspond
to a yield surface called the upper yield surface (see section 3.2), which satisfies all the
requirements of limit analysis.

As noted in chapter 2, upper bound limit analysis starts with the choice of a velocity
field. In classical yield line theory a special velocity field which is not continuously
differentiable is chosen, resulting in a discontinuous strain rate field (see Appendix B,
section B.1).

3.1 Work and equilibrium method

In the classical yield line theory an upper bound for the limit load can be calculated by
two different methods, namely the work and the equilibrium methods. The work



method is based on the principle of virtual work where the work performed by the
external forces due to a virtual displacement is equated to the energy dissipated in the
yield lines. In the equilibrium method the equilibrium of each individual plate segment
of the yield line pattern is considered. It was proven (Jones and Wood, [7]) that the
equilibrium method is actually the virtual work method presented in another form.
The equilibrium method should not be confused with the equilibrium methods in
lower bound limit analysis. In the yield line equilibrium method only the equilibrium
of the rigid plate segments is satisfied. In these segments local equilibrium may still be
violated as may the yield condition.

3.2 Conditions for a complete solution

In order to derive an important condition for finding a complete solution in yield line
theory, first the so-called upper yield surface (Braestrup, [2]) will be defined. For this
the concept of a supporting plane will be used. A supporting plane of the yield surface is
a plane through a point on the yield surface such that the yield surface lies entirely on
one side of the plane. The convexity condition of a yield surface requires that there
exists at least one supporting plane for every point on the yield surface. The upper yield
surface is the surface enveloped by the supporting planes of the yield surface normal to
any possible strain rate tensor in the yield lines. This can be illustrated for the Von
Mises yield condition for (thin) plates subjected to bending expressed in the plane
moments my,, my and m,, (defined in a x,-x,-x, coordinate system with x, being the
coordinate axis perpendicular to the plane of the plate):

mAy — Moy - Mg + M+ 3-mi—mi =0, 3.1)
where mg=1/4 -1} f,. The intersection of this yield surface with the plane m,, =0 is
shown in Fig. 2 together with the corresponding upper yield surface.
A necessary, but not sufficient condition for obtaining the complete solution is that the
state of stress in a point lying on the intersection of two or more yield lines does not
violate the yield condition. The normality condition requires that the strain rate tensor
in any point of a yield line is normal to a supporting plane through the corresponding
stress point on the yield surface. For a point on the intersection of two or more yield
lines the stress point should be on the intersection of the supporting planes of the yield
surface normal to the strain rate tensors in the yield lines. But the stress point must also
lie on the actual yield surface. Braestrup [2] therefore formulated the following two
theorems:
1. “A solution involving yield lines can only be correct if the points on the upper yield
surface, corresponding to the yield sections, lie on the actual yield surface.”
2. “The smallest upper bound which may be found by yield line theory is the exact
solution corresponding to the upper yield surface.”

Thus if the actual yield surface of the plate is different from the upper yield surface,
the exact limit load of the plate cannot be determined from yield line theory.
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Fig. 2. Von Mises yield surface and the corresponding upper field surface.

In classical yield line theory of concrete slabs, the yield surface corresponds to the
upper yield surface and therefore the complete solution can, in theory, be found by
refining the yield line pattern. However, the condition that the state of stress at the
intersection of yield lines must satisfy the yield condition, imposes restrictions on the
angles of intersection of the yield lines. For instance, in the limit analysis of reinforced
concrete slabs with isotropic reinforcement, it can be proven that positive and negative
yield lines (that is yield lines with positive and negative bending moments, respect-
ively) should intersect at angles of 90°.

4 Generalized yield line theory

In order to generalize the classical yield line theory to the analysis of the load-deforma-

tion behavior of thin walled steel members the following two points have to be con-

sidered:

1. The use of upper bound limit analysis for non-linear load-deformation behavior.

2. An appropriate yield criterion. Frequently membrane stresses will develop during
the deformation of a thin-walled steel member, thus the yield criterion should
account for the influence of normal and in-plane shear forces.

First these two aspects of generalized yield line theory are discussed. Then the expres-

sions for the fully plastic moment, normal force and shear force in generalized yield line



theory are derived based on the Von Mises yield surface. The corresponding interaction
formulas are given in Appendix A. Finally the limitations of the validity of generalized
yield line theory are discussed.

4.1 Analysis of geometric non-linear load-deformation behavior

Upper bound limit analysis is a technique used to calculate an upper bound for the
limit load of an undeformed structure. The same technique can be used to analyse the
geometrically non-linear load-deformation behavior of a structure. This is done by cal-
culating a series of limit loads. Each calculation is based on a geometrical configuration
of the structure differing from the previous one by a small amount corresponding to the
collapse mode of the previous stage.

It must be noted that the exact load-deformation curve of a structure can only be deter-
mined if the complete solution at every deformation stage is known. If the complete
solution is not known, only an upper bound for the limit load at each geometrical con-
figuration can be calculated. An upper bound for the load-deformation behavior of the
structure cannot be caiculated. This is due to the fact that the deformation mode which
is assumed in an arbitrary mechanism may never be attained in the actual mechanism
(see Fig. 3). In general it is impossible to calculate the complete solution at every de-
formation state. Therefore it is important to remember that although an upper bound
limit analysis technique is used, the analysis does not result in an upper bound for
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Fig. 3. The deformation mode which is assumed in the arbitrary mechanism is never attained in
the actual mechanism.
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the load-deformation behavior of the structure. This fact is often disregarded in the
literature.

4.2 Yield condition

In general for steel the Von Mises yield surface is a valid yield condition. In generalized
yield line theory stress resultants or generalized stresses rather than components of the
stress tensor are used. Therefore a yield surface which is expressed in these generalized
stresses is needed. As in limit analysis, there are two approaches used in determining a
yield surface expressed in terms of generalized stresses, namely a static approach and a
kinematic approach (Save and Massonnet, [22]). In the static approach, which is probab-
ly best known, a stress distribution which satisfies the yield condition is assumed over
the cross section of the plate. These stresses are integrated over the thickness of the
plate to produce the yield surface in terms of generalized stresses. In the kinematic
approach a strain rate distribution is assumed over the cross section of the plate, the
corresponding stress distribution is calculated by applying the normality rule to the
yield condition and the yield surface in terms of generalized stresses is once more found
by integrating these stresses over the thickness of the plate.

Out[15, 16] pointed out that upper bound limit analysis requires the yield surface to be
derived on a kinematic basis. A kinematically induced yield surface will be an upper
bound to the real yield surface whereas a statically induced yield surface may lie inside
the real yield surface.

Out! also derived a kinematically induced yield surface for use in generalized yield line
theory, accounting for bending moments, normal forces and in-plane shear forces (see
Appendix A). This yield surface is an upper yield surface of the Von Mises yield surface.
Because the Von Mises yield surface is strictly convex the upper yield surface does not
coincide with it, and therefore the complete solution in generalized yield line theory
cannot be found by refining the yield line pattern (see section 3.2.).

Out furthermore compared the kinematically induced yield surface with three different
statically induced yield surfaces and noted that the statically induced surfaces are closer
to the kinematically induced surface when the stress distributions show better resem-
blance.

4.3 Fully plastic moment, normal force and shear force

In generalized yield line theory it is often assumed that the fully plastic normal force n,,
and the fully plastic moment m, per unit length of a steel plate are equal to:

m,=1/4-1}-f,, 4.1)
ny, =t,-f, (4.2)

' The same yield surface was derived by Dean [4], but the derivation by Out is more general.
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These expressions are derived for fully plastic beams. They are not valid for plates
because in a plate yield line the strain rate tensor component &y vanishes since the
length of the yield line does not change. The correct expressions for the fully plastic
moment, normal force and shear force will now be derived.

Expressing the stresses in the x,-x¢-x, coordinate system (see Fig. 4) and taking account
of the symmetry of the stress tensor, the Von Mises yield criterion can be written as:

2 2 2 2 2 2 2
W =0un+ Oss+ O, — Opn* Ogs — O 77— Oz Opp + 3. (Jns + 05, + Gzn) _fy =0. (43)

It is assumed that the strain rate components &,, and &g, are equal to zero, because shear
deformation is limited to the s-n plane (see also Appendix B, section B.1). From the
normality condition it can be concluded that

O, =05, =0, 4.4
and since the plate is assumed to be thin

0,,=0. (4.5)
Taking £, = 0 and applying the normality condition results in:

1% _
00 N

g.ss =1 A (2 T Gnn) = 0, (46)

where 1 is a positive constant of proportionality. From equation (4.6) it can be seen that

Oss = Oynf2. 4.7
The Von Mises yield surface then reduces to:
w=3[4-0k+3 02— 1] =0. (4.8)

If g, =0 yielding will occur if

Onn = 2/]/g 'fya (49)

Fig. 4. Orientation of local coordinate axis in a yield line.
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and if o,, =0 yielding will occur if

Gns=1/13-/y. (4.10)

Therefore, the correct expressions for the fully plastic moment, normal force and shear
force per unit length are:

my=1/4-12-2y3-,, (4.11)
ny =t,-2Y3- £, (4.12)
sy = 1,/Y3f, (4.13)

These correct expressions were used by Dean [4] and Out [16], but in most other yield
line applications (Narayanan and Chow [14], Packer and Davies [17], and Murray [11,
12]) the expressions 4.1 and 4.2 were used.

4.4  Validity of generalized yield line theory

Generalized yield line theory is based on a “small displacement (gradient)” Lagrangian
formulation (see Appendix B, section B.3). This imposes restrictions on the validity of
generalized yield line theory. These restrictions are explained in Appendix B and will
be summarized here. They were not described explicitly in literature before.

Yield lines are simplifications of yield zones as they occur in reality. For a yield zone in
which a bending moment, a normal force and an in-plane shear force are active, gen-
eralized yield line theory is valid only if:

Ap << 1 [rad], (4.14)
Au, <« 9, (4.15)
Au, < 0, (4.16)

where Agp is the rotational deformation in the yield zone, Au, the normal deformation,
Aug the in-plane shear deformation and ¢ the width of the yield zone. For yield zones
with only a bending moment or only a shear force these limitations do not apply. For a
yield line with only a normal force the theory is valid only if Au, << §.

In generalized yield line theory the width ¢ of the yield zone is a fictitious quantity. Its
magnitude is undetermined. One might conclude therefore that the restrictions (4.15)
and (4.16) have no practical importance because the limitations on the normal deforma-
tion Au, and the in-plane shear deformation Aug can be eliminated by assuming a large
width of the yield zone. It must be noted however that in the derivation of the kinematic
equations of a yield line mechanism (see section 5.3) the assumption is made that the
width of the yield zones is so small (compared to the width of the rigid plate elements)
that the yield zones may be considered as yield lines.

13



5 Work methods

In the work method a strictly kinematic approach is used and thus the method is fully

consistent with upper bound limit analysis. The method was developed by Dean [4].

Out [15, 16] applied the method to calculate the post-buckling behavior of an in-plane

loaded square plate and commented on some of its aspects. Because the work method is

rather complex some simple problems are solved in Appendix C, so that the reader may
get a better understanding of the method.

The work method can be summarized as follows:

1. Assume ayield line mechanism, that is choose a yield line pattern and determine the
velocities of the rigid plane elements.

2. Determine the yield line deformation rates from the rigid plane element velocities
by using the kinematic equations. These equations are discussed in section 5.3.

3. Determine the yield line forces by applying the normality rule to the (kinematically
induced) yield surface and inserting the yield condition.

4. Calculate an upper bound for the limit load of the structure at any deformation state
by equating the rate of energy dissipated in plastic flow in the yield lines to the rate of
work performed by the external loads.

Some remarks have to be made about the determination of a yield line mechanism in
generalized yield line theory. In generalized yield line theory, as in classical yield line
theory, the structure to be analyzed is thought to consist of rigid plane elements joined
by yield lines in which all deformation is postulated to occur. But where as in classical
yield line only bending moments? are active in the yield lines, in generalized yield line
theory normal and in-plane shear forces can also occur. The normality condition
requires that in a yield line where a bending moment and normal and shear forces are
active, rotational and normal and in-plane shear deformations must occur. The normal
and in-plane shear deformations in the yield lines are determined by the movements
of the rigid plane elements relative to each other. This means that a mechanism is no
longer determined by the choice of a yield line pattern alone, as is the case in classical
yield line theory, but by both the choice of a yield line pattern and the determination of
the velocities of the rigid plane elements. It is possible to define different mechanisms
for the same yield line pattern. The different kind of mechanisms that can be distin-
guished for the same yield line pattern will be discussed in the next section.

5.1 Equilibrium and non-equilibrium mechanisms

It can be deduced from the theorems of limit analysis that a necessary but not sufficient
condition for finding the complete solution is the satisfaction of the in-plane equili-

In classical yield line theory not only bending moments, but also torsional moments and trans-
verse shear forces are active in the yield lines. This becomes evident in the equilibrium approach
where the effect of torsional moments and transverse shear forces is accounted for by the
concept of nodal forces. However, the bending moments are the only yield line forces that
contribute to the energy dissipation.

14



brium of the plane elements. It is possible to determine the velocities of the rigid plane
elements in such a way that this condition is satisfied (Dean [4] and Out [16]). A
mechanism satisfying the in-plane equilibrium of the rigid plane elements will be called
an equilibrium mechanism, whereas any mechanism not satisfying this condition will
be called a non-equilibrium mechanism.

The equilibrium mechanism will probably result in the lowest limit load for the yield
line pattern under consideration, but not necessarily in the exact limit load. Local equi-
librium may still be violated as may the yield condition. Conditions on the intersection
of yield lines, necessary for obtaining the complete solution, as discussed in section 3.2
have not yet been derived for generalized yield line theory. Also, since the kine-
matically derived upper yield surface does not coincide with the Von Mises yield
surface, the exact limit load cannot be obtained by refining the yield line pattern. Only
the exact limit load corresponding to the upper yield surface can be found. But even
finding the exact limit load corresponding to the upper yield surface may be too difficult
in practice, because the analysis becomes increasingly complex with an increasing
number of yield lines and rigid plane elements.

As discussed in section 4.1 (generalized) yield line theory will result in the exact load-
deformation curve of the structure only if the complete solution at every deformation
stage is known. If this is not the case the analysis will not result even in an upper bound
of the load-deformation behavior of the structure. Since neither an equilibrium
mechanism nor a non-equilibrium mechanism will result in a complete solution there
is no reason why an equilibrium mechanism would result in a better estimate of the
load-deformation behavior of the structure than a non-equilibrium mechanism. This is
illustrated by the analysis of an in-plane loaded square plate as shown in Fig. 5. For the
assumed diagonal yield line pattern, two different mechanism were determined, an
equilibrium mechanism and a non-equilibrium mechanism. The non-equilibrium
mechanism is defined by assuming that the vertices of plane elements 1 and 3 remain
connected during increasing lateral deflections. The solution for the equilibrium
mechanism was given by Out [16] while the solution for the non-equilibrium mech-
anism was determined by the author. The results of the analysis of the two mechanisms
are shown in Fig. 6 together with the results of a finite element analysis. It should be
remembered that the yield line analysis results in a plastic unloading curve which is
supposed to coincide with the actual load-deformation curve of the structure (in this
case simulated with a finite element calculation) only after failure of the structure. As
expected for the undeformed plate the equilibrium mechanism results in the lowest
limit load. But for increasing deformations the non-equilibrium mechanism results in
lower limit loads. In this case the non-equilibrium mechanism results even in a better
prediction of the load-deformation behavior of the plate than the equilibrium mech-
anism. This is luck, the non-equilibrium mechanism might as well have resulted in a
worse prediction. The equilibrium and non-equilibrium mechanisms are seen in Fig. 7
to be different. The in-plane deformations for both mechanisms are shown in this figure
as a function of the lateral deflection of the plate.

In general a mechanism is determined if all the instantaneous positions and velocities

15
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Fig. 7. Relation between lateral deflection and in-plane deformations for the equilibrium and

the non-equilibrium mechanism for
a. small lateral deflections
b. large lateral deflections.

of the rigid plane elements are known as a function of only one deformation and one
deformation rate parameter. In an equilibrium mechanism one starts to determine the
positions and velocities of the rigid plane elements as a function of two or more defor-
mation rate parameters. Requiring that the in-plane equilibrium of the plane elements
is satisfied results in a set of equations from which the redundant deformation rates can
be determined as a function of only one deformation rate parameter, and hence in the
determination of the mechanism (Dean [4] and Out [16]). In many cases it is very
difficult to determine an equilibrium mechanism, but fortunately it is often relatively
easy to define a non-equilibrium mechanism. In a non-equilibrium mechanism the
positions and velocities of the rigid plane elements are determined directly as a
function of only one deformation rate parameter. Since the velocities of a rigid plane
element are determined by the velocities of the vertices of the plane element we can
define a non-equilibrium mechanism by assuming that certain vertices remain linked
during deformation. In other words: normal and in-plane shear deformations are
precluded in these points. The choice of these vertices is arbitrary but should be made
in such a way that a mechanism is possible. If these non-equilibrium mechanisms are
chosen in a reasonable way (that is the occurrence of membrane stresses in the
mechanism should correspond to actual stresses in the structure) then it can be expect-
ed that they will give useful results. In Appendix D an example of the determination of
the non-equilibrium mechanism is given for the in-plane loaded square plate described
earlier in this section.
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5.2 True and quasi mechanisms

Murray [11, 12] distinguished two major classes of plastic mechanisms, the so-called
true mechanisms and the so-called quasi mechanisms. A true mechanism is a mech-
anism which can develop with only rotational deformations in the yield lines whereas a
quasi mechanism is a mechanism which can develop only if also normal or in-plane
yield line deformations occur in (some of) the yield lines. If one tries to make a card-
board model of a quasi mechanism, one will have to make some cuts in the cardboard to
enable the model to deform.

For a true mechanism a non-equilibrium mechanism solution can be defined with only
bending moments active in the yield lines. Normal and in-plane shear force, and hence
in-plane displacements of the rigid plane elements relative to each other, need to be
considered only if one wants to satisfy the in-plane equilibrium of the rigid plane
elements. Since in a true mechanism the normal and in-plane shear forces can be
determined from equilibrium considerations alone, the same result can be obtained by
reducing the plastic moment in the yield lines for the presence of normal and shear
forces (see also chapter 6). This is often easier to do since then the influence of the
in-plane velocities of the rigid plane elements on the kinematic equations needs not
be considered.

5.3 Kinematic equations

The generalized strain rates or yield line deformation rates used in generalized yield
line theory are the rotational deformation rate A¢g, the normal deformation rate Au,
and the shear deformation rate Au, (see Appendix B, section B.1). In this section it will
be explained how the yield line deformations and deformation rates can be determined
from the velocities and instantaneous positions of the (vertices of the) rigid plane
elements. The exact algorithms are not given, all calculations can be made with simple
vector calculus. Yield lines are simplifications of yield zones as they occur in reality (see
Appendix B, section B.3). The derivation of the kinematic equations below is based on
the assumption that the width of the yield zones is so small (compared to the width of
the rigid plane elements) that the yield zones may be considered as yield lines.

In Fig. 8 two adjacent plane elements linked by a yield line are shown. In the deforma-
tion state of the structure the yield line is determined as the line of intersection of the
two planes containing the plane elements. The length of the yield line equals the length
of the sides of the plane elements coinciding in the undeformed state. The rotational
deformation Ag in the yield line equals the difference between the actual and the initial
angle between the plane elements. Since the length of the yield line does not change
during deformation, every point P, on the yield line can be associated with two points P,
and P, on the plane elements 1 and 2 with which it initially coincided. The axial defor-
mation Au, and the shear deformation Aug can then be calculated from the vectors a;
and a,, from P, to P, respectively P to Py(see Fig. 8). Each vector g; can be resolved into
a component ag; in the direction of the yield line and a component a,; normal to the
yield line. Then, Au, can be calculated as
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plane element 1

plane element 2
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Fig. 8. Mechanism geometry for derivation of kinematic equations.

Auy=lan —anml, (5.1)
and Aug can be calculated as
AI‘/s: |(_1_sl—gs2|' (52)

The angle of rotation Ag is constant over the length of the yield line. The normal defor-
mation Au, and shear deformation Aug, may vary linearly. Therefore the deformations
at any point of the yield line can be calculated from the deformations at two different
points of the yield line. For these points the end points of the yield line are chosen.
The yield line deformation rates can be determined from the yield line deformations by
the equations:

Al dAu, (5.3)
un =T .
dt
pii, = 384 (5.4)
L[S - d[ 9 .
and
dAg
Ap=—. 5.5
?="q (5.5)

In the kinematic equations used by Dean [4] and Out [16] second order polynomial
approximations were used, that is sin ¢ was approximated by ¢ and cos ¢ was approx-
imated by (1 — 1/2- ¢?). It is not necessary to use these approximations.

6 Equilibrium method

In the equilibrium method the yield line mechanism is thought to consist of indepen-
dent strips parallel to the direction of loading (see Fig. 9). The load carrying capacity of
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Fig. 9. An example of a plastic mechanism, shown with two characteristic strips:
a. mid-zone unit strip
b. edge zone unit strip.

each strip at any deformed geometry is calculated by safisfying the equilibrium of the

strip under the condition that the forces in the yield line (moment, normal force and

shear force) satisfy the yield condition. The capacity of the whole plate is found by
integrating the limit loads of all the strips.

The strip equilibrium method differs from the equilibrium method in classical yield

line analysis, where the equilibrium of the whole rigid segment is considered. In classi-

cal yield line theory it was proven that the equilibrium method is equivalent to the work
method. However, it is quite easy to show that this is not the case in generalized yield
line theory.

1. With the strip method only equilibrium mechanisms can be found while with the
work method also non-equilibrium mechanisms can be defined.

2. In the strip method the normality condition is not satisfied. For a true mechanism
the work method and the equilibrium method may give the same results. This is
caused by the fact that in a true mechanism the forces in the yield line can be deter-
mined from equilibrium considerations alone. For a quasi mechanism however the
normality rule is needed to derive the forces in the yield line and therefore the strip
method cannot be used for the analysis of quasi mechanisms. It must be noted that
Murray and Khoo [11] used the strip method to analyze “structural mechanisms”
which are quasi mechanisms, but in their analysis they assumed that the fully plastic
zones which appear in quasi mechanisms are either tension yield zones, compres-
sion yield zones or shear yield zones, without any interaction of a bending moment.
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3. The kinematically derived yield surface can only be given in a parametric representa-
tion, i.e. as a function of the deformation rate parameters in the yield lines. This
makes this yield surface unsuitable for use in the strip method. In the strip methed
therefore statically induced yield surfaces are used, which are not consistent with
upper bound limit analysis.

The equilibrium approach was used by Davies, Kemp and Walker [3], by Murray [11, 12,

13] and by Narayanan and Chow [14]°. These applications differ in the yield surface

used. In the strip method developed by Murray the yield surface that was used is not

explicitly mentioned. Since Murray has published quite extensively on yield line
mechanisms in thin walled steel structures in may be interesting to investigate the yield
surface he used in more detail.

6.1 Murray’s yield surface

Murray’s strip method is based on the use of an expression for the moment-capacity of
a plastic hinge inclined at an angle § to that direction (see Fig. 10). It can be shown how-
ever that this expression is not based on a yield surface and therefore theoretically
incorrect.

F
H“H—— M e
redp (Qzé twisting
N moment
R
A
\\
/ K
Mp,redp —b
F

Fig. 10. Derivation of the moment capacity of a yield line inclined at an angle f to the direction
of thrust.

’ Davies, Kemp and Walker [3] actually referred to their method as the strip approach. Narayanan
and Chow [14] and Murray [12, 13] did not explicitly define their methods as equilibrium or strip
methods.
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First the derivation by Murray is given. The moment capacity M, ..q of a plastic hinge in
a rectangular strut is given by the equation:

My ea=M,-(1—F?|F}) = M,-(1—1it;), 6.1)

where M, = 1/4~tf,~fy - b is the plastic moment of the strip, f},=1t,-f,- b is the yield
force of the plate and 1, is the thickness of the central core of the plate carrying the axial
load F':

tle/O‘y-b). (6.2)

When the yield line is inclined at an angle 5 to the direction of thrust it is again assumed
that a central core of depth ¢, carries the axial load F and hence we still have:

t=F|(f,b). (6.3)

The bending moment M, ..q5 carried by the remaining areas of the cross section is given
by equation:

My eap=1/4-12-f,- blcos B - (1 — t1[t}) = My req[cOS B. (6.4)
From rotational equilibrium of the element ABJK it can then be concluded that:
p,s,red/i = Mp,red,b’/cos ﬂ = jup,red/cos2 ﬂ (65)

The error in this derivation is the assumption that the axial load F in an inclined yield
line is carried by a core of the same thickness as in an yield line perpendicular to the
direction of thrust. The load F can be decomposed in a component N normal to the
yield line and a component S tangent to the yield line

N =F .cosB, (6.6)
S =F -sinp. 6.7)

Taking a yield condition (for instance the Von Mises yield condition, see section 4.3),
the core areas needed to carry the normal force and the shear force in the field line can
be calculated:

v =5/(ts-bJcos B) = 1,3~ ts=F -Y3-sin § -cos /(b - f,) (6.8)
o=N/(tx-blcosB) =2-f,}3— tx=F -Y3-cosf -cos B[(2-b-f,) (6.9)
Hence it can be concluded that the total core area ¢, needed to carry the load P equals:
ti=ts+tn=F[(b-£,)-(/3-sinf-cosp +1/2-}/3-cos’ 5. (6.10)

So it can be seen that the thickness of the core needed to carry the load F' depends on
the angle of inclination of the yield line.

7 Intuitive methods

In the intuitive methods mechanism approaches are used without following a flow rule.
Basically it is assumed that only bending moments are active in the yield lines. The
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influence of normal or shear forces is sometimes accounted for by satisfying the yield
condition in the yield lines, resulting in a reduction of the fully plastic moment in the
yield line, but the magnitude of the normal and shear forces is determined from rather
intuitive equilibrium considerations. The intuitive methods vary in the yield surface
used (often the influence of in-plane shear forces is neglected) and in the accuracy of
the calculation of the rotations in the yield lines.

The intuitive methods are theoretically not correct, but they are much simpler than the
work method or the equilibrium method, and in some cases they have given good
results. An example of an intuitive approach with good results is the mechanism solu-
tion to predict the web crippling failure load of plate girders subjected to patch loading
by Roberts [21]. Another example is the analysis of the strength of overlapped joints in
rectangular hollow section trusses by Packer and Davies [17].

8 Miscellaneous
8.1 Moving yield lines

In classical yield line theory a yield line is a line across which the rate of slope dui,/dx,
is discontinuous, where 4, is the deflection rate of the middle surface and x,, is the direc-
tion in the plate normal to the yield line. So far only stationary yield lines were con-
sidered. However, Prager [19] showed that travelling or moving yield lines are also
possible. This derivation is presented here in a simplified form and the equation for the
rate of energy dissipation in a moving yield line is derived.
Let D denote a yield line (or in general: a line of discontinuity) which is either station-
ary or moves in the x,-direction. The fact that a function f is continuous, but not con-
tinuously differentiable across D is expressed by the equation:
of af

V-Aaxn+Aa[_0. 8.1)
In this equation V is the yield line velocity (the velocity of propagation of D), and A
denotes discontinuities across D, for instance Ap = ¢, — ¢_- Ap =0 means that ¢ is
continuous across D. Equation 8.1 is called the kinematic condition at the line of dis-
continuity D.
Now let us consider a yield line in which only bending moments are active. Since the
deflection u, and the deflection rate

. Ou,
U, = Ey

are continuous across D the kinematic condition results in:

du, du, ou,
+ A =0V A =0,
ox,, ot 0x,

V.A (8.2)
and
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ou, o,
FATES

V-A
ox, ot

0. (8.3)
For a stationary yield line ¥ = 0 and it can be concluded that the slope d0u,/dx, may be
discontinuous across D (and therefore the rate of slope 8Liz/8xn) while the acceleration
du,/0t must be continuous.

Considering a moving yield line (V + 0) it can be concluded that the slope du,[dx,, must
be continuous. The kinematic condition for the slope du,/dx, then results in:

d%u, du, d%u, o,

+ A 0—-Ax=—A =A

V-A—— 3
ox n ox n ox n ox n

v (8.4)

Since the rate of slope dii,/dx, is not continuous across D it can be concluded that the
curvature changes instantaneously when the yield line moves across a particle in the
plate. Denoting the rate of slope du,/dx,, at the other side of the moving yield line by 6,
and the curvature by x, it can be seen that an initially flat plate element is curved into a
constant radius » = 1/R (see Fig. 11) if the yield line velocity V' is equal to:

V=6-R. (8.5)
4L_
D Xn
. |4
UZ g
&
i
uz
A4 R

Fig. 11. Velocity and displacement fields at a moving yield line.

The rate of energy dissipation per unit width of the plate can then be calculated as:
Wino=my-0=m,-V|R. (8.6)

In a moving yield line the slope du,/dx, must be continuous. In the crushing process of
thin-walled steel structures sometimes moving “fold lines” are observed (Abramowicz
and Wierzbicki [1] and Wierzbicki and Abramowics [24]). A moving fold line can be
modeled by the concept of two moving yield lines (see Fig. 12). The first moving
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Fig. 12. Kinematically inadmissible and admissible folding mechanism.

yield line bends the plate into a curvature and the second yield line straightens the plate
again. This process is referred to as a rolling process in literature.

An example of a (intuitive) mechanism solution including moving yield lines can be
found in a paper by Kecman [9]. A theoretically more exact mechanism solution inclu-
ding moving yield lines was given by Wierzbicki and Abramowicz [24].

8.2  Curved yield lines

In yield line theory the structure to be analyzed is thought to consist of rigid plane
elements joined by yield lines. Since the line of intersection of two planes is always a
straight line only straight yield lines are possible. However, mechanisms with curved
yield lines (see Fig. 13) were reported by Davies, Kemp and Walker [3], by Murray [11,
12, 13], and by Dean [4]. Both Dean and Murray proposed a solution for a mechanism
with curved yield lines, Dean’s solution was based on the work method, and Murray’s
was based on the equilibrium method. The solution is possible by assuming that while
the rigid plane elements are rigid for in-plane deformations, they may be flexible for
out-of-plane bending. It is interesting to note that Dean’s circular yield arc mechanism
is a quasi mechanism while Murray claimed that his flip-disc mechanism is a true
mechanism (see Fig. 13). However, when one tries to fold the flip-disc mechanism from
cardboard one discovers that actually it is a quasi mechanism too. But in order to be able
to analyze this mechanism with the equilibrium method Murray had to assume it was a
true mechanism.
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Fig. 13. Yield line mechanisms with curved yield lines.

8.3  Determining a yield line pattern

In all applications of yield line theory for the analysis of the load-deformation behavior
of thin-walled steel members, the assumed yield line pattern was based primarily on
observations in tests.

Davies, Kemp and Walker [3] determined one of the parameters of the yield line pattern
by minimizing the failure load for the initial, undeformed structure, taking into account
the effect of initial imperfections. If one tries to use the same approach to determine the
yield line pattern in the deformed structure, it will often be found that for increasing
deformations the optimal mechanism will change. Out [16] for instance noted: “for
increasing deflection, different mechanisms, with a refined yield line pattern, produce
lower approximations for the collapse behavior.” It must be noted that if it is assumed
that the yield line pattern changes during deformation, some yield lines must be
moving yield lines instead of stationary yield lines. In some applications of yield line
theory, for instance in the mechanism solution for patch loading on plate girders by
Roberts [21], this aspect is neglected.

Murray [13] stated that the local plastic mechanisms which develop in thin-walled
structures are a by-product of the elastic buckles formed during the rising part of the
load path. He reported two types of mechanisms in box-columns with axial loading,
namely the flip-disc mechanism and the roof mechanism (see Fig. 14). The flip-disc
mechanism developed when first yield occurred at the edges of the plate while the
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Fig. 14. The two plastic mechanisms observed in box-columns with axial load only.

roof mechanism developed when first yield occurred at the centre of the plate, the place
of first yield being determined by the b/, ratio of the plate and the initial imperfections
of the plate. So Murray concluded that “the location of a plastic mechanism is fixed by
the point of first yield. It becomes attached to that point and cannot change either its
position or form.”

Murray’s conclusions were restricted to the mechanisms observed in box-columns with
axial load only. These mechanisms had stationary yield lines. It must be noted that a
mechanism with moving yield lines can actually change its position and form.

9 Conclusions

1. Upper bound limit analysis results in a limit load for a structure at a certain deflected
shape. It does not result in an upper bound for the load-deformation behavior of a
structure (section 4.1).

2. Upper bound limit analysis requires the yield surface to be derived by the kinematic
approach (section 4.2).

3. Yield line analysis can only lead to a complete solution if the upper yield surface
corresponds to the actual yield surface (section 3.2). The kinematically induced yield
surface derived by Dean [4] and Out [15, 16] for use in generalized yield line theory is
an upper yield surface of the Von Mises yield surface, not coinciding with the Von
Mises yield surface (section 4.2). Therefore, in generalized yield line theory, the
exact limit load cannot be found by refining the yield line pattern.
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For the Von Mises yield surface the expressions for the fully plastic moment,
normal force and shear force in a yield line are (section 4.3):

my=1[4- l‘%-2/]/§-fy
ny :tp'z/l/?_"fy
Sp = ’p/ﬁ'fy

. For yield lines in which a bending moment, a normal force and an in-plane shear

force is active, generalized yield line theory is only valid if Ap << 1 [rad], Au, << 6
and Auy, << 6, where Ag is the rotational deformation in the yield line, Au, the
normal deformation, Au, the in-plane shear deformation and ¢ the width of the
yield zone (section 4.4 and Appendix B, section B.3).

In generalized yield line theory a mechanism is determined by the choice of a yield
line pattern and the determination of the velocities of the thus defined rigid plane
elements (chapter 5).

An equilibrium mechanism is a mechanism in which the velocities of the rigid
plane elements are determined in such a way that the in-plane equilibrium of the
rigid plane elements is satisfied. A non-equilibrium mechanism is any mechanism
in which this equilibrium is not satisfied. In the analysis of the load-deformation
behavior of a structure a non-equilibrium mechanism, which is much easier to
analyze than an equilibrium mechanism, may give results as good as those obtained
from an equilibrium mechanism (section 5.1).

A true mechanism is a mechanism which can develop with only rotational deforma-
tions in the yield lines. A quasi mechanism is a mechanism which can develop only
with normal and/or shear deformations in (some of) the yield lines (section 5.2).
The work method is the only generalized yield line method being fully consistent
with upper bound limit analysis (chapter 5).

Equilibrium methods are not consistent with upper bound limit analysis because
the flow rule is not satisfied (section 6.1).

Both equilibrium and intuitive methods, although theoretically incorrect, have
proven to be able to produce useful results.

. Not only stationary yield lines, but also moving yield lines are possible. If an

initially flat plate element is curved into a constant radius R by a moving yield line
then the rate of energy dissipation per unit width in the yield line is given by:

Win=m, - V|R,
where V is the velocity of the moving yield line (section 8.1).
Curved yield lines were observed in tests and can be modeled by assuming that the
rigid plane elements are flexible in bending (section 8.2).
A vyield line pattern has to be determined from observations in experiments. The
actual yield line pattern is not necessarily the yield line pattern that minimizes the
failure load. In axially loaded box columns the yield line pattern was proven to be
determined by the place of first yield in the column (section 8.3).
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Notations

displacement vector component (i = n, s, z)

velocity vector component (i = n, s, z)

width of plate

force

uniaxial yield stress

normal force per unit length of yield line

fully plastic normal force per unit length of yield line
shear force per unit length of yield line

fully plastic shear force per unit length of yield line
time

thickness of plate

mid-plane displacement vector component (i =, s, z)
mid-plane velocity vector component (i = n, s, z)
in-plane displacement

volume, velocity

out of plane deflection

rate of energy dissipation, rate of work

rate of specific energy dissipation

in-plane coordinate axis normal to yield line
in-plane coordinate axis along yield line

coordinate axis perpendicular to plane of plate
width of yield zone

normal deformation in yield line

normal deformation rate in yield line

shear deformation in yield line

shear deformation rate in yield line

rotation in yield line

rotation deformation rate in yield line

strain rate tensor components (i,j =n, s,z)

normal strain rate at mid thickness
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shear deformation rate

rate of curvature

rotation of rigid plane element
rotation rate of rigid plane element
plastic potential function

stress tensor components (i,j = n, s, z)
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Appendix A: A kinematically derived yield surface

The kinematically derived yield surface is described by the following formulas:

Ao ++b+
-nl——(p~l/2-[a+~b—a_~b+—w§~1n<a ”,

m, |Ag] a +b
=0,
A
Lo 20 -],
n, |Ag|
At o
= - V1 + s 112a
a1 (@den
Ag Y 4pt
S8 g (“_ b")’

in which

mp :2/]/§-fy(tp/2)2

fully plastic moment per unit length of yield line

np :2/l/§'fy'tp

if AG£0
ifAg=0
if Ag 0
if Ag=0
if Ag £ 0

if Ag =0

fully plastic normal force per unit length of yield line

Sp = 1/1/§‘fy'tp

fully plastic in-plane shear force per unit length of yield line

n, Au, Sy Aug
a)nz—*‘-——_— a)sz—~ "

2m, A¢p 2m, Ag
at=w,+1 a =w,—1

bt =V(@")V+w: b =V(a)*+?

A, = normal deformation rate in yield line
A, = shear deformation rate in yield line
A¢ =rotational deformation rate in yield line

n =normal force per unit length in yield line
s = in-plane shear force per unit length in yield line
m = bending moment per unit length in yield line

(A.1)

(A2)

(A3)

(A4)

(A.5)

(A.6)

(A7)

(A.8)
(A.9)

Equations A.1, A.2 and A.3 can be regarded as a parametric representation of the yield

surface in generalized stress space.
For m = 0 this yield surface is represented by the equation:

(n[n,)* + (s[s,)* —1=0.
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For s =0 this yield surface is represented by the equation:

Tﬁ%-(m/mp)Jr(n/np)z——l:O. (A.11)

Appendix B: Basic assumptions and validity of generalized yield line theory

In this appendix the basic assumptions of generalized yield line theory will be
explained. Therefore first the yield line deformation rates and yield line forces are
derived. Then the validity of the derived formulas will be discussed. Unless otherwise
stated a Lagrangian description is used.

B.1 VYield line deformation rates

For the choice of the generalized strain rates first the character of the strain rate tensor

in ayield zone as outlined by Out [15, 16] will be discussed. The orientation of the local

coordinate axes in the yield zone is shown in Fig. 4. Generally, a strain rate tensor
consists of six independent components. The following strain rate tensor components
are assumed to be zero:

1. &,,(=¢,,) and &;,(=€,,), since shear deformation is limited to the n-s plane. This
assumption is equivalent to stating that straight lines initially normal to the middle
surface remain straight and normal to that surface subsequent to bending. It implies
that twisting curvature across the yield line is precluded.

2. &g, since the length versus width ratio of a yield line is large and the adjacent plate
elements are rigid; incompressibility then implies that

ézz: “énn- (Bl)

In the yield zone thus the following strain rate distribution is assumed (see Fig. 15):

énn (XZ) = E;+ % * X7y (B.2)
€n(X) = —E—di-x,, (B.3)
éns (XZ) = ésn(xz) = )’/27 (B4)
éss = énz. = ézn = ‘c’:zs = ész =0. (BS)
t 777
tn/2 7 ,
IR I I S I VY
/
tp 2 %,
Lz ,
€ns

Fig. 15.  Assumed strain rate distribution in a yield line.
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The generalized strain rates are chosen to be:

) .

Aiiy=1é-dx,=¢&-6, (B.6)
0
)

Adig = [ y[2-dx, =y[2- 4, (B.7)
0
)

Ag =135 dx, =246, (B.8)

0

where ¢ is the width of the yield zone.

For a better understanding of the basic assumptions of the method the velocity field
corresponding to the above described strain rate field will be discussed (Prager [18]).
In a portion of a plate with thickness ,, the axes x, and x, are chosen in the middle
surface of the undeformed plate.

The following velocity field is considered:

o, (B.9)

an=Uy z" 5 .
0xy

. ou,

as = Us Xz - 5 (BIO)
0x¢

o o, i oki, 8%,

d, =1, —X, (a L 8x> +1/2-x2- (a 5 axg)’ (B.11)

where i, 1i, and i are the rate of deflection and the in-plane displacement rates of the
middle surface. The second and third term on the right-hand side of equation B.11 are
necessary if the velocity field is to satisfy the condition of incompressibility:

(énn + éss + ézz = 0) (B12)

From this velocity field the following strain rate field can be calculated:

dd, i, 9%, B.13)
=5 = — Xz o3 .
ox, Ox, ox3
dds 0ui oli
G =t O T (B.14)
Ox, O, 0xs
_9d, (9, 9 o%i, 0%,

y + 20 o, [ ), B.15
¢ T ox, <8xn 8xs> X ( oxt  ax2 ( )
dd, 9d du, O 9%
=g =1[2-—" =12 (—+——2-x,- z B.16
fns = ¢ / ( axn> / <8xs 0x, Xz axn-axs> ( )
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L dds 0d,
&gy =E,=1/2- 8x2+8xs =
0%, 0% 0%, 9%
12 (=x,- — +—— |+ 1/2-x2- )], B.17
/ < x <axn-8xs 8x§> [2-x <6x12,‘6xS ax? )) ( )

. ) dd, dd,
Exa=Ex=1/2" o +8x

i,
1/2-{—x,- +

Ax2 " 9x, - Oxg

Aty - x,
0

=g, + Aliy

Uy =Upo +

Atig - x,

Us = Uigo +

un(t) = Lin l=Upo +

= Uy, + Au,

Aun'xn

>:

8% 9%, 9%
s >+1/2-x§~(5§—+ﬁ)). (B.18)
n n S

The following middle surface velocities are considered:

for0<x,<¢
for x,>6 (B.19)
for0<x,<¢
for x, >0 (B.20)
for0<x,<¢
for x, >0 (B.21)

Assuming constant velocities this results in the following (continuous but not con-
tinuously differentiable) displacement field:

for0<x,<¢

for x, >0 (B.22)

where u,, = ti,,-t and Au, = Au,-t,

u(t) =gt = ugo +
= U, + Al

where ug, = iy, -t and Aug

A
= Uy + -22 (2xn - 5)

Aug - X,

for0<x,<é
for x,>¢ (B.23)
= Aiig- t,
for0<x,<d
for x,>¢ (B.24)

where u,,=t,, -t and Ap =Agp-1t.
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Inserting equations B.19-B.21 into B.13-B.18 results in:

Au, Ag-x,
.nn =T T B.25
éss =0, (B26)
A, Agp-
& =— = - 2P % (B.27)
g g - for0<x,<¢
Aii,
éns = ‘c':sn = 1/2 5” (B28)
£, = €5 =0, (B.29)
‘ézn = g.nz =0. i (B30)
§ =0 for x, >0 (B.31)

Combining equations B.25-B.31 with equations B.6-B.8 results in the strain-rate dis-
tribution assumed in the yield line (see equations B.2-B.5). The zone 0 < x, < 6 can
thus be considered as a yield zone.

B.2 Yield line forces

The yield line forces (generalized stresses) are by definition the stress-type variables
0y, Oy, ..., O, that must be associated with the yield line deformation rates (generalized
strain rates) gy, s, ..., G, in order that the rate of specific dissipation be given by:

We=01-¢1+ 0y Go+ ... + On- G- (B.32)

In order to calculate the energy dissipated in plastic flow we have to evaluate the
volume integral:

A
In the yield zone this integral reduces to:
Wy= 1 (Gun Enn + a2z + 2 Ong - 0g) AV. (B.34)
\%

For thin plates o,, =0 so equation B.34 reduces to:

Ws = 5 (Gnn . S.nn +2-0p- éns) dv. (B35)
v

It should be noted that the choice of g,, has no influence on the energy dissipated in
plastic flow, since the yield conditions are independent of hydrostatic stress. This can
easily be seen by writing (Mase [10]):

W= éq-1, dV, (B.36)
\'%
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where €., is the equivalent or effective strain rate defined by:

Taking o,, = 0 therefore is not a static condition, as Out [15] wrote. A static condition
would not be allowable in a kinematic approach.
Equation B.35 can be rewritten as follows:

e A, Ag-x, Aii,
We={dx,Jdx, | (om [0+ =2+ 00 — | dx,, (B.38)
00—t 0 0 )
in which / is the length of the yield line.
This equation can be further simplified to get:
!
W= (Ag-m + A, - n + Adig - 5) dx,. (B.39)

0

m, n and s are the bending moment, normal force and in-plane shear force per unit
length, which can be calculated from the equations:

12

m= f Onn - X5 - dX,, (B.40)
—t,/2
1p/2

n = j Onn - Ay, (B.41)
—1,/2
ty/2

s = | ohdx, (B.42)
—tp/2

B.3  Validity of the derived formulas

Both Dean [4] and Out [15, 16] did not discuss in detail the validity of generalized yield
line theory. Dean stated that his mechanism solutions are valid only if the lateral deflec-
tion is so small that the approximation sin 8§ = @ is valid. He did not explain whether
this restriction is caused by the approximations used in the kinematic equations or
whether it is caused by the derivation of yield line deformation rates and yield line forces.
Out [16] stated about the validity of generalized yield line theory: “Yield lines are sim-
plifications of yield zones as they occur in reality. Full modeling of a yield zone could be
done by using slip line theory, which implies that the geometry of the zone has to be
modeled in detail. A yield line is two rather then three-dimensional. In other words, it
is a local criterion. An error results from this reduction; for example energy dissipated
at the boundary of deformed and undeformed sections is neglected (Drucker [5]).” In
the derivation of the yield line deformation rates it was assumed that in the yield zone
£,, = — &qn. Since in the adjacent rigid plate elements ¢,, = 0, this results in a mis-
matching (see Fig. 16). This mismatching becomes more pronounced with increasing
generalized strain rates Au, and Ag and decreasing width ¢ of the yield zone.
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Fig. 16. Mismatching resulting from (a) bending and (b) stretching.

To analyze the validity of the derived formulas for the yield line deformation rates and
the yield line forces the flow theory of plasticity is needed. Especially for large strains
the flow theory of plasticity is most easily described using the Eulerian descriptive tech-
nique. For small strains (rotations and displacements may be large) the flow theory of
plasticity can also be described using the Lagrangian description technique (see for
instance Washizu [23] and Puthli [20]). If both the displacements and the displacements
gradients are sufficiently small the Eulerian and the Lagrangian description may be
taken as equal.

The derivation of the yield line deformation rates and yield line forces is based on a
“small displacement” Lagrangian formulation. This means that the derivation is only
valid for small displacement gradients, that is for

8ai
—< 1. (B.43)
an

This is caused by the fact that the formula to calculate the strain rate from the velocity
field

=1 (adi+adj (B.44)
=12 —+— .
! an axi

is valid only for small displacement gradients. For larger displacement gradients the
formula:

6ak

éij = 1/2'(5kj +a—xj>

.adk+ ( aak>.6dk (B45)

S+ —X
ax; ki ox;/ Ox;

should be used, where J,; is the Kronecker delta. In unabridged notation these equa-
tions for &,,, £,, and &, are:

da,\ dd, Odas 0dy da, O0d
onn: 1+ n . n S' S Z' Z’ B.46
‘ ( ox n ) ox n ox n ox n ox n ox n ( )
da, dd, Odag Jdd, - da,\ 9d, (BAT)
€77 = : P P AP .
ox, 0x, Jx, Ox, ox,]| ox,
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e 12 dd, N dd 112 da, dd, N da, 9dd,
Ens = Ox,  Oxy Ox, Ox, Ox, Ox
da, aa'z>

1. (00 95 9as 065\ ) (00, 0dy
e Ox, Ox, Ox, Ox,]

S+
Ox, Ox, Ox, Ox,
As a result generalized yield line theory is valid only for small displacement gradients.
From the equations B.22-B.24 for the displacement field it can be concluded that the
theory is valid only if:

(B.48)

On _y Al (B.49)
0x, ) '
Oug Aug

<1l- <1 - for0<x,<d (B.50)
ox, 1
ou, Ap-x,

< 1- <l-Apx 1 (B.51)
X, J

Thus normal and in-plane shear yield line deformations should be very small compared
to the width of the yield zone and the rotational deformation in the yield line should be
much smaller than 1 rad, that is much smaller than 57°. Also it can be seen that in a yield
zone where normal and in-plane shear deformations occur, the width of the yield zone
cannot be equal to zero. This can also be concluded from the equations for the displace-
ment field, since a yield zone width ¢ equal to zero would result in a discontinuous
displacement field and hence in rupture of the material.

The restriction that generalized yield line theory is valid only for small displacements
gradients can be made plausible by looking in more detail at a yield line with only
normal deformation. In the Eulerian description equation B.44 is exact for displace-
ment gradients of any magnitude. But in the Eulerian description the stresses have to be
integrated over the instantaneous thickness zp(t) of the plate (and not over the initial
thickness ¢, of the plate, as in the Lagrangian description) to obtain the generalized
stresses. Let / be the length of the yield line (which is kept constant during deforma-
tion), t, and tp(t) the initial and actual thickness of the plate respectively, and 6 and 5(¢)
the initial and actual width of the yield zone respectively, with 6(¢) = ¢ + Au,. From
global volume invariance it can be concluded that

()= 5 5

o 0 B.52
o) " S+ Au, (B:52)

This implies that using equation B.44 to calculate the strain rate field from the velocity
field the Eulerian and the Lagrangian approach will only give the same result if
tp(t) = t,, that is if Au, << §. The change of thickness in a yield line with normal defor-
mations is not imaginary. Kachanov [8] described that ajump in the normal component
of velocity leads to abrupt thickening or thinning of the plate along the line of
discontinuity. This line is a mathematical idealization of the local development of a
“neck” which is observed in experiments (see Fig. 17).
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Fig. 17. A neck observed in a tensile test on a strip.

The limitations for the derived formulas expressed by equations B.49-B.51 are not valid
for yield lines in which only bending moments or only shear forces are active. Hill [6]
described a general theory of sheet-bending using cylindrical coordinates and an
Eulerian description. He showed that for a sheet bent in plane strain (negligible strain
in the width direction) the plastic work done per unit width equals m, - L - a, where L is
the original length of the sheet, a is the angle of bending per unit original length, and
my= l/4-l§~2/1/§~fy. This derivation is valid for strains of any magnitude. We can
therefore conclude that the rate of energy dissipated in yield lines with only bending
moments acting in them can always be calculated by:

W=m, Ag-1, (B.53)

where Ap = a - J, J is the width of the yield zone, and / is the length of the yield zone,
regardless of the magnitude of Ag. It should be kept in mind however that when a large
rotational deformation Ag is concentrated in a small yield zone width ¢, a large mis-
matching results.

For ayield line with only shear forces active, equations B.44 and B.45 result in the same
strain rate field, namely:

énnzéss=g.zz=ész=€.nz=0> (B54)

Therefore for yield lines with only shear forces active in them the restriction Augfd << 1
does not apply. Also, a shear yield line does not cause any mismatching, no matter how
small the width of the yield zone.

It is concluded that the validity of generalized yield line is subject to the following
restrictions:
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1. For yield lines with bending moment, normal and in-plane shear forces:

Ap <1 [rad], Au,<<dé and Au,<<d (B.56)
2. For yield lines with only a normal force:

Au, << o (B.57)

3. For yield lines with only a bending moment: no restrictions, but concentrating a
large rotation in a small yield zone results in a large mismatching.

4. For yield lines with only an in-plane shear force: no restrictions.

In generalized yield line theory the width ¢ of the yield zone is a fictitious quantity. Its
magnitude is undetermined. One might conclude therefore that the restrictions
Au, << 6 and Aug<< ¢ have no practical importance because the limitations on the
normal deformation Au, and the in-plane shear deformation Au, can be eliminated by
assuming a large width of the yield zone. It must be noted however that in the deriva-
tion of the kinematic equations of a yield line mechanism the assumption is made that
the width of the yield zone is so small (compared to the width of the rigid plate
elements) that the yield zones may be considered as yield lines.

Appendix C: Examples of the work method
C.1 A simple true mechanism

In this section the equilibrium mechanism solution and a non-equilibrium mechanism
solution for a simple true mechanism with only one yield line will be described. There-
fore an axially loaded panel as shown in Fig. 18 is considered. First the equilibrium
mechanism solution is given. The collapse load corresponding to this mechanism will
be denoted by F,.

The equilibrium mechanism solution

The mechanism of the axially loaded panel is determined by the yield line pattern
(in this case one yield line) and the velocities of the rigid plane element. The velocities
are described by the parameters 6 and d,where 6 is the rotational velocity of the plane
element around the yield line, and a the in-plane velocity normal to the yield line.
Choosing 8 and 6 as deformation and deformation rate parameter, we have:

0()=6-1, (C.1)

where ¢ denotes time. The yield line deformations and deformations rates, as well as the
out of plane deflection w, out of plane deflection rate w, end displacement v and end
velocity v (see Fig. 18), can be determined from the velocities and instantaneous
positions of the rigid plate elements. The kinematic equations are thus given by:

Ap =0, Ag =0, (C.2)
Au, =a, A, =d, (C.3)
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Fig. 18. A simple true mechanism.

Aug =0 Ay =0, (C4)
v =L—(L+a)-cosf, v =(L+a)sind 6—d-cosb, (C.5)
w =(L+a) sind, w =(L+a)-cosf-0+d-sinf. (C.6)

Since no shear forces are active in the yield line, the yield condition in generalized
stress space is expressed by (see Appendix A):

Ap m n\?
W:_i;-+(_)_1=a )
[Ag| m, n,
Applying the normality rule to this surface results in:
Ay .
AtinfAG =2 my[ny - njny —o—= d|6 (C.8)
|Ap|
Equating the rate of external work to the rate of internal plastic work at the yield lines
we find:

m-b-Agp+n-b-Au,=F,q-V. (C9)
Assuming:
n=a-n,, (C.10)

and inserting the kinematic equations, the yield condition and the flow rule into equa-
tion C.9 results in:
Fiq (1+a?

= . C.11
b-n, (L+a)-sin@-nyfm,—2-a-cosf (.10

p

Since a < L, only a small error is made if equation C.11 is replaced by:
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Foq (1+a?)
b-n, L-sin@-nyfm,—2-a-cosf’

(C.12)

In order to find the smallest upper bound the ratio F,,/ (b- np) is minimized with respect
to a. Taking:

A=cos’ 0, (C.13)
and

B=L-sin6-ny[m,, (C.14)
results in:

+B—VB*+4.4
a = .
2-Y4

So the limit load £, can be calculated for every deformation state, characterized by the
parameter &, from the equation:

F,y —B+VB>+4-4

(C.15)

= . C.16
b-n, 2-A4 ( )
From equations C.15 and C.16 it can be concluded that:
F,
o= T s (C.17)
n, b-n,

This is exactly the condition for in-plane equilibrium. The lowest upper bound is thus
found when the in-plane equilibrium is satisfied.

The same solution can be found by deriving the equilibrium equations from the
principle of virtual work. Substituting equations C.2, C.3 and C.5 into equation C.9
one finds:

m-b-@+n-b-d=Fq(L+a)-sin@-0—F,-d-cosf. (C.18)
Since d and 6 are independent it can be concluded that:

n-b-d=—F,-a-cosb, (C.19)
and

m-b-0=Fy-(L+a)-sinf-6. (C.20)

From equations C.19 and C.20 the ratios n/n, and m/m, can be derived:

— Fe
M os0, (C.21)
n, b-n,
and
F, .
=2 (Lt q)-sin0-n,lm, (C.22)
m, b-n,
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Combining equations C.21 and C.22 with equation C.7 and replacing (L + a) by L
results in:

2
( Feq > ccos? 0 4 L= -L-sin@-ny/m,—1=0. (C.23)
b-n, b-n,

Taking 4 = cos’@and B=L-sinf- n,/m, (compare C.13 and C.14) results in equation
C.1e6.

From equations C.21 and C.23 the ratio n/n, can be determined as a function of § and
hence the ratio d/ 6 as a function of 8 (see equation C.8). The corresponding a can then
be calculated by evaluating the integral:

t ]
{d-dr=1d|6-d6. (C.24)
0 0
The corresponding v and w can be calculated from equations C.5, and C.6, or may be
approximated by the equations:

v =L—L-cos, (C.25)
w=L-sinf. (C.26)

In the above mechanism the in-plane equilibrium of the rigid plane elements is satis-
fied. In this very simple example the in-plane equilibrium has to be considered in only
one direction. In general however one has to consider three directions, namely two in-
plane translations and one in-plane rotation.

A non-equilibrium mechanism solution

In this section two non-equilibrium mechanism solutions will be described, one with
only bending moments active in the yield line and one with ony normal forces active in
the yield line. The collapse load corresponding to these mechanisms is denoted by F.
First the mechanism solution with only bending moments active in the yield line will be
described.

Considering once more the plate of Fig. 18, now the assumption ¢ = 0 is made, so that
the velocities of the plane elements are described by only one parameter. Equations C.2
to C.6 then reduce to:

Ap =0, Ag =6, (C27)
Auy = Aug=0, Atiy = Adig =0, (C.28)
v =L—L-cosf, Vv =Lsinf-0, (C.29)
w =L-sin6, w =L-cosf-6. (C.30)

Analogous to the first problem one obtains:

Freg 1 1
. . (C31)
b-n, B L-sin-ny/m,
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The corresponding v and w can be calculated from equations C.29 and C.30.

From equation C.31 it can be seen that very small values of 8 result in very large values
of F,q. A bound on F,q for very small @ is given by another mechanism, namely the
mechanism in which only normal forces are active in the yield line. To define this
mechanism it is assumed that 6 = 0. This results in:

Eleq

=1. C.32
b (C32)

The mechanisms governs for B < 1.

C.2 A simple quasi mechanism

In this section the equilibrium mechanism solution and a non-equilibrium mechanism
solution for a simple quasi mechanism are described. Therefore a laterally loaded panel
with two restrained built-in edges and two free edges, as shown in Fig. 19 is considered.
First the equilibrium mechanism solution will be described. The collapse load corres-
ponding to this mechanism is denoted by F,.

Lf+wa—L—0

Lo ¥
(57}

—m_d—

i
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yield line

—

L

Fig. 19. A simple quasi mechanism.

The equilibrium mechanism solution

The mechanism is determined by three yield lines and the velocities and instantaneous
positions of the thus defined four rigid plane elements. The boundary conditons
require that the rigid plane elements 1 and 4 do not experience in-plane translations.
The velocities of the plane elements 2 and 3 are described by the parameters 92, ds,
6, and d5, where d, and ds are the in-plane velocities normal to the yield lines, and
6, and 65 the rotational velocities around yield lines 1 and 3, respectively. For reasons
of symmetry we have:

Gy=dy=d, (C.33)
6,=06;=86. (C.34)
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This results in the following yield line deformations and deformation rates:

Ap; =Aps=—0, Agy =Agy=—0, (C39)
Ap, =2-0, Ag, =26, (C.36)
Auy,=Aupz=a, Aty = Aligz=d, (C.37)
Auyy =2-(LJcos@ — L —a) Atiny =2-(L[cos? sin @ - 6 — d), (C.38)
w =L-tand, w  =L[cos’8 6. (C.39)

In the yield lines only bending moments and normal forces are active. The yield condi-
tion in generalized stress space is thus expressed by (see Appendix A):

Ag 2
g0 .ﬂ+<£> _l=0. (C.40)

p

Applying the normality rule to this yield surface results in:
nlny=1/2-nylmy-Aun[|Ag| =2[t, Ay[|Ag]. (C4D
Since n cannot become larger than n,, we have:
nfn,=1 for 2[t, Auy[|Ag|>1. (C.42)

The equilibrium equations result from the notion that the work rate by the external
forces is equal to the rate of energy dissipated in plastic flow, so:

2.b-(my-6+n-d+m6+ny-(Lfcos’d-sind -0 —a)) =
Foq-L[cos’0-6. (C.43)

Since d and 6 are independent, it can be concluded that:

ny = ny=ns, (and therefore m; = — my = mj) (C.44)
and
Feq—t/L cos’ 6 -m 2-sin6 C.45
S=t/L- smy[my+2-sin@ - nyfn,. (C.45)
p

Combining equations C.35 to C.39 with C.41 and C.44 results in:
d=1/2-L-sinf/cos* 6 -0, (C.46)
and

mzﬂzﬁzL/tp-sinH/cos%’ for 0<Lft,-sin@fcos’d <1, (C.47)

a2 5 for L[t,-sin@[cos* 0 > 1. (C.48)
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Substituting equations C.47, C.48 and C.40 into C.45 one finds:

F
, “—¢,/L-cos’ 6 + L|t,-sin* [cos’ O
.np

for 0<L[t,-sinf/cos’d <1, (C.49)

F,

p “—2.sinf for LJt, sin@/cos’ O > 1. (C.50)
. np

In the above mechanism the in-plane equilibrium of the rigid plane elements is satis-

fied. Next a non-equilibrium mechanism solution will be described for which thisis not

the case. The collapse load corresponding to this mechanism will be denoted by F.,.

A non-equilibrium solution

Considering once more the plate of Fig. 19, the assumption 4 = 0 is made, so that the
velocities of the plane elements are described by the parameters € and 6 only. Anal-
ogous to the equilibrium mechanism, one finds:

Fne .
p L —=¢,JL-cos’@ +2-L|t, sin’@[cos® O
. np
for 0<Lft, sinf/cos’ 0 <12, (C.51)
£ .
b—'@—=2-sin€ for L[t,-sin@/cos’§ >1/2. (C.52)
- n,

Appendix D: An example of the determination of a non-equilibrium mechanism

In this appendix a non-equilibrium mechanism for an in-plane loaded square plate is
described (see Fig. 20). It is shown how the instantaneous positions and velocities of the
vertices of the rigid plane elements can be determined as a function of one deforma-
tion and one deformation rate parameter. From these instantaneous positions and
velocities the yield line deformations and deformation rates can be determined as
explained in section 5.3.

The mechanism is determined by the cross-shaped yield line pattern and the velocities
of the thus defined four rigid plane elements. The out of plane deflection w and the out
of plane deflection rate w are chosen as deformation and deformation rate parameters.
Assuming that the initially coinciding vertices of plane element 1 and 3 remain linked
during deformation, and considering the boundary conditions of the plane elements,
the velocities and instantaneous positions of the vertices of the rigid plane elements can
be expressed as a function of the parameters w and w only. For reasons of symmetry
only one quarter of the plate needs to be considered (see Fig. 21).
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Fig. 20. Geometry of a non-equilibrium mechanism for an in-plane loaded square plate.
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Fig. 21. For reasons of symmetry only one quarter of the plate needs to be considered.
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The initial coordinates of the vortices of the rigid plane elements are given by:

P,(0) =(0,0,0) (D.1)
P(0) = (6/2,0,0) (D.2)
P;(0) = (b/2, b/2,0) (D.3)
P4(0) = (0, 5/2,0) (D.4)

The initial end points of yield line 1 are the points P, and P;.
The instantaneous coordinates of the vertices of rigid plane element 1 are given by:

Py oi(w )2(0 0,w) (D.5)
Pyoi(w) = (b/2,V(b/2)* — w2, 0) (D.6)
Pyoi(w) = (0,Y(5/2)* — w2, 0) (D.7)
The instantaneous coordinates of the vertices of rigid plane element 2 are given by:
Prox(w) = (b/2)V(82)” + w2 (= b/2,0,w) + (b/2,0,0) (D.8)
P2,e2(W) = (6/2,0,0) (D.9)
Py 2(w) = (6/2,0,0) (D.10)
Finally, the instantaneous coordinates of the end points of the yield line are given by:
Pry(w )=(0 0,w) (D.11)
Py (w) = (b[2.Y(5/2) — w2,0) (D.12)

The velocity of the vertices of the plane elements can be calculated by differentiating
the instantaneous coordinates with respect to w. Thus the velocities of the vertices of
plane element 1 are given by:

Pyoy(w )=(0 0,1)-w (D.13)
Py (w) = (0, wV (b2) — w?,0) - (D.14)
Pyor(w) = (0, wV (b2)> — w?,0) - (D.15)

The velocities of the vertices of plane element 2 are given by:

_Plﬂez(w)z—w B2V ((5]2)* + w?) b/20w W+

(b2)V(6)2)> + W 0,0,1 - (D.16)
Py er(w) =(0,0,0) - w (D.17)
Py o(w) =(0,0,0) - % (D.18)

Finally, the velocities of the end points of the yield line are given by:

Pry=(0,0,1)-w (D.19)
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Py, = (0,wV(b]2)* — w?,0) - w (D.19)

The in-plane displacement v of the loaded plate edge with respect to the plate center can
be calculated from:

v=>5[2—V(b[2)* + w’. (D.20)

The in-plane displacement rate v is given by:

v=w/V(b[2)* + w* W (D.21)
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