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Abstract

A numerical scheme for strictly and nearly incompressible rubberlike materials is
described. A Total Lagrange description is adopted to describe the large deformations
that occur. A separate interpolation for the displacements and the pressures is' used to
model the (near) incompressibility. The employed constitutive model can be classified as
hyperelastic with the strain energy function being composed of a deviatoric and a
volumetric contribution. Thus, the volumetric deformations can be controlled in a physi-
cally realistic manner, which is important since experimental evidence indicates that,
although the ratio of bulk modulus over shear modulus is very large for rubbers,
volumetric strains cannot be neglected. The second part of the paper is devoted to a
number of practical examples. It is shown that finite elements are very useful for assess-
ing the strength and deformation characteristics of rubber components, but that a number
of questions that are important for practical structures, are still open.



MODELLING AND ANALYSIS OF RUBBERLIKE MATERIALS

1. Introduction

Rubbers and rubberlike materials are used less frequently in civil engineering practice
than steel and concrete. Nevertheless, there is a growing need for an improved
knowledge of and computational models for the mechanical behaviour of components
composed of rubberlike materials, since such components are more and more used in
critical parts of a structure. Examples are shock absorbers which prevent damage accu-
mulation between steel and concrete parts of a structure, rubber parts which act as seals
between parts of underwater tunnels and bearing platens of bridges. Failure of the rubber
connection may lead to considerable damage.

Since the finite element method is widely employed in computational models for
steel and concrete, it would be convenient if it could also be used for the analysis of
rubber parts. Fortunately, it appears that the finite element method is also a powerful tool
for the analysis of rubberlike solids. In fact, the first successful calculations date back to
the late 1960s (see e.g., the book by Oden, [1]). Nevertheless, a number of problems
which adhere to the application of the finite element method to practical problems con-
cerning the analysis of rubber components still exist. These became apparent to the writ-
ers when they applied finite element techniques in conjunction with material models for
rubber to some specific practical problems.

From the current experience of the writers, the problems with the application of the
finite element method to rubber components relate to:

— properties of finite elements in relation to the incompressibility or near-
incompressibility of most rubbers, and

— stability of the solution process, especially when thick components are considered in
the compressive regime, and

— inadequacies of rubber models that are currently available in finite element codes.

The first problem arises from the fact that the incompressibility or near-
incompressibility imposes constraints on the degrees-of-freedom of the elements. This
phenomenon, known as ‘locking’, causes an overstiff solution. In recent years, much
research effort has been devoted to this problem and, at least in two-dimensional applica-
tions, finite elements have been developed which no longer suffer from this behaviour.
For three-dimensional applications the solution is more complicated.

The biggest problem is probably the second issue, namely the stability of the numeri-
cal process. It is known that stability and uniqueness of solution are guaranteed only



below a threshold level of loading in finite elasticity [2,3]. Nonetheless, convergence
difficulties are not mentioned in most numerical examples reported in the literature. This
is probably because the majority of the examples concerns the behaviour of rubber com-
ponents in tension. Then, the writers did not have problems with convergence either. For
components that were subjected to compressive loading, an inability to converge was
often found long before the design load had been applied, the precise point of divergence
somewhat depending on the shape factor of the specimen. Slender specimens could be
analysed further than stubby specimens.

The third problem is the discrepancy between some elementary rubber models and
the real physical behaviour. Almost all numerical codes incorporate an incompressible
rubber model. The writers found that this assumption is too great a simplification of real-
ity. Depending on the amount of soot, industrial rubbers are usually much more compres-
sible than an assumption of incompressibility suggests. Of course, rubbers are still
incompressible in a mechanical sense since the ratio of bulk modulus to shear modulus
(in the ground state) is very large.

In this article, we will attempt to contribute to bridging the gap between theoretical
finite element analyses of imaginary rubber parts and the often rather crude design pro-
cedures of rubber components. Therefore, an important part of this article is devoted to
numerical analyses of some practical structures. Where possible, analyses will be com-
pared with experiments. Discrepancies will be pointed out and the improvements that are
needed will be discussed.

In the spirit that theoretical developments and practical applications should proceed
at approximately equal pace, some attention is also given to the determination of material
parameters for the models from laboratory tests. To give a complete picture, the discus-
sions of the parameter determination and the applications will be preceded by a treatment
of the material models and the finite element techniques that have been used.

2. Constitutive equations

In this chapter an overview will be given of the material models that have been used in
the examples. New models are not presented in this chapter. It is rather included for sake
of completeness and in order to introduce the stress and strain measures that have been
used in the analysis and in the determination of the parameters of the material models.
Readers who are not familiar with mathematical models for the mechanical behaviour of
rubberlike materials are urged to read this chapter, since knowledge thereof is needed not
only for the finite element formulation to be discussed in the next chapter, but also for the
determination of the material parameters.



Fig. 2.1. Current and reference configuration.

2.1 Kinematic preliminaries

Let us consider a body B with coordinates (€}, &,, §3) in the undeformed configuration
By and coordinates (X, X, X 3) in the current configuration (Figure 2.1). We can define a
function x(&) that maps the undeformed configuration onto the deformed configuration,
as follows:

x(€): E-ox @2.1)

In eq. (2.1) the vector X that points to a material point in the deformed configuration is a
function of the vector & that defines a material point in the undeformed state. The coor-
dinates of X are called Eulerian or spatial coordinates, while those of & are termed
Lagrange or material coordinates. A small, elementary volume that is contained some-
where in the body will in general undergo a translation, a rotation and a deformation.
For constitutive relations, which basically set a relation between the stress and the defor-
mation, the rigid body motions (rotation and translation) must be eliminated from the
total movement of an elementary volume. For elimination of the rigid translation, we
consider the matrix F that arises when the spatial coordinates are differentiated with
respect to the material coordinates:

F= XVE,' (2.2)

The symbol V., is the gradient operator which carries out differentiation with respect to
the material coordinates (§;, &y, &3). The operator V is applied from the right, i.e.



aE-»1 aé2 aé:33
X
! ) 9 ) 3x2 8x2 ax2
—9 x —— — —— — — —_— N
2l og 95, 95| |og, o8, o
X

x5 Oxq 0x3

so that F T=V§x. Next consider an additional translation ¢ that is added to the vector X,
such that X" = X +¢. Since ¢ is not a function of &, differentiation with respect to  yields

F= X,V'r;‘

Obviously, the deformation gradient F describes the deformation and the rotation of a
body for each material point, but the amount of translation is not contained in this matrix.
To also remove the rotation, we decompose F in a multiplicative sense:

F=RU. (2.3)

Without proof (see e.g., [4]), it is now asserted that the matrix R contains pure rotations
and the matrix U contains pure deformations. The multiplicative decomposition of eq.
(2.3) is called the polar decomposition and separates the rigid rotations from the pure
deformations. It is noted that only for the case of small deformations, the multiplicative
decomposition can be replaced by an additive decomposition.

Unfortunately, the strain measure U is not easy to compute. Rather, U’ is computed
By virtue of the fact that R is an orthogonal matrix, we have the identity RT=R"! . Con-
sequently, R'R= I I being the unit matnx and premultiplication of eq. (2.3) by the
transpose of the deformation gradient, Fr , results in

C=U’=F"F, .4)

and the quantity C also measures the pure deformation. In the literature (e.g., [4]) it is
referred to as ‘right stretch tensor’ or ‘right Cauchy-Green tensor’. As we will show in
the sequel, C reduces to the unit matrix for the undeformed state. This means that in the
undeformed state we have a deformation of "1" which is not very appealing to engineers
who are accustomed to strain measures that are zero in the undeformed state. Therefore,
the Green-Lagrange strain tensor 7 is also used frequently to characterise large deforma-
tions. It is obtained by subtracting the unit matrix I from the right stretch tensor C and



dividing the result by a factor 2:

Y= —;'(C—I). 2.5)

In the chapter on determination of the material properties use will frequently be made
of the so-called principal stretches A, A, and A;. These quantities are the ratios of the
new and the old lengths of an elementary cube, referred to the principal axes of the
stretch tensor C. In this coordinate system the deformation gradient F is given by:

F={0 2,0
00

With aid of (2.4) we can then derive that the normal stretches are given by C, =7\,12 etc.
while all shear stretches vanish. In the undeformed configuration the principal stretches
equal unity and C ;;,C,, and C 35 are therefore also equal to 1 in the undeformed state.
The normal components Y} 1, Ypo, Y33 of the strain tensor Y on the other hand are given by
Y11= é‘(li‘)‘ — 1) etc., so that ¥}, Yo, and Y33 vanish in the undeformed state.

2.2 Strain energy function

The most notable mechanical properties of rubbers are their ability to undergo extremely
large deformations, up to several hundred percent, without tearing and the fact that the
strains are almost instantaneously recoverable. For these reasons, rubbers are often
termed ‘ideally elastic’ materials. An ideally elastic material is defined by a unique rela-
tion between stress and strain, the stress being dependent only on the current stress or
strain state and not on the deformation history as is the case for many other engineering
materials. Properties like a unique relation between stress and strain and no energy dissi-
pation in a closed cycle of application and removal of stress, can be ensured by requiring
the strain energy density e to be a function of the strain tensor Y only. In consideration of
egs. (2.4) and (2.5) we can alternatively require ¢ to be a single-valued function of the
right stretch tensor C: ¢ = ¢ (C). In a purely mechanical theory, i.e. without considera-
tion of thermal effects, an equilibrium state is characterised by the vanishing of the first
variation of the difference of the total deformation energy £ of the body and the poten-
tial energy U of the loads:

S(E —U)=0. (2.6)

In the current configuration £ is given by



E = [pe(C)dV 27)
\4

with p the mass density in the actual state. When g is the gravity acceleration vector and
when a traction t acts on an elementary surface dS with a normal vector n in the current
configuration, U is given by

U = [px"gdV + [x"tds. @.8)
4 N

Since e is a function of the right stretch tensor only, the variation of the strain energy
density e is given by

Se =2 tr[SFgf:—FT] , .9)

where tr denotes the trace of a matrix. Combining (2.6)-(2.9) and assuming that the load
is conservative, we obtain

d
[2p H[SF—eFT] dv — [pdx"gdV — [8xtdS =0. (2.10)
\% aC Vv N

Invoking the divergence theorem for the first integral,

d d d
[2p tr[&F—eFTJ av =[2p8x"F—Fn dS - [5x"div| 2pF—F"| dV,
' aC ; aC ’ aC

with div denoting the divergence operator, this equation can be rewritten as

d d
[8xT| 2pF——FTn—t| s - [8x"| div(2pF—F")+ pg| dV =0, @.11)
g aC ’ aC
whence
div| 20F 25 FT| 4 pg=0 2.12)
iv — =0, .
PR pg

for each material point within the body, and



de T
t=2pF—F ' n (2.13)
oC
on the surface S of the body in the current state. Introducing the Cauchy stress tensor
de T
T=2pF—F (2.14)
dC .
eqs. (2.12) and (2.13) can be rewritten as

divt+pg =0, (2.15)

and

t=1n. 2.16)

It is seen from eq. (2.16) that the Cauchy stress tensor T sets the relation between the
traction t and the normal vector nn on a surface S in the current state. It is emphasised
that (2.15) and (2.16) have been derived in the actual configuration. Consequently, the
Cauchy stress T is also a function of the current coordinates and differentiation is carried
out with respect to X.

Although knowledge of the Cauchy stresses is often necessary to assess whether the
actual stresses that occur in rubber components can be accepted, their use in numerical
codes is not convenient, since the expression (2.14) for T involves the deformation gra-
dient F, which is still unknown. For computational purposes it is therefore convenient to
introduce the second Piola-Kirchhoff stress tensor G,

oW
o=2—" (2.17)
oC

with W =pge the strain energy function, and p, the mass density in the reference state.
In view of eq. (2.14) the relation between the physically relevant Cauchy stress T and the
auxiliary stress measure O reads:

T=‘E"FO’FT.

Po

Because of conservation of mass of an elementary volume dV/,

and since



dv
— = Ay =detF
i

the relation between T and © is also written as
-1 T
T=(detF) FoF . (2.18)

An important simplification is obtained when the material is isotropic throughout the
loading process. Then, the strain energy function W is only a function of the three stretch
invariants

I1=C+Cp+Ca3 (2.19)
I,=C1Cp0+CpCa3+C33C 11 =C1pC 0 =Cp3C 3= CqyC s, (2.20)

I3=C 1 Cql a3 +2C1nC 051 ~C11C3C 5= €131 C 137 C33C 1505 221
of the right stretch tensor C:
W =W(]1,12,13)9

where W(3,3,1)=0 must hold as W must vanish in the undeformed state. With
definition (2.17) for the second Piola-Kirchhoff pseudo-stress tensor G, we get

ow oy aw 9, gw 93
oW 1 W2 oW™S

o= .
A, C 21, oC Al oC

(2.22)

The gradients 0/ ;/0C , 01 ,/0C and 0l 5/0C are elaborated in the Appendix.

The task of constructing a function W that accurately captures experimental data, is
alleviated considerably if it is assumed that the strain energy is separable into a
volumetric part that is purely dependent on the volumetric deformations, and a deviatoric
part that is a function of the distortion. The volumetric strain is entirely characterised by
the third invariant / 5 of the right-stretch tensor C. In the principal directions the expres-
sion for I 5 reduces to / 3=C |;C »,C 35, or using the principal stretches Ay, A, A5:

I3= (A%

Since, for an elementary volume, AA,Ay=dV/dV, , I sets a relation between the
volume in the deformed configuration dV and the volume in the undeformed

10



configuration dV/:

2
7 dv
Plavy)
As a first step in writing W as the sum of a volumetric and a deviatoric part, we will
decompose W into W (1,1,) and f (5):

W=W(,I)+fs) 2.23)

such that W (3,3)=0and f (1)=0. A problem for the identification of f (/5) is that
W is also affected by purely volumetric deformations. This problem may be solved by
introducing the modified set of stretch invariants J |, ./, and J 5:

Jy=1,17", (2.24)
Jy=1,15"7, (2.25)
Ty=13"7, (2.26)

which transformation has first been used by Penn [5] and has later also been used in [6,7].
With aid of the modified invariants, eq. (2.23) is rewritten as

W =W (,,J)+f3-1), (2.27)

which formulation provides a complete separation of the distortional and the volumetric
work. It is noted that by making f* a function of J;—1, the condition that f vanishes in
the undeformed state is automatically ensured. When using expression (2.27) as the strain
energy function of a slightly compressible solid rather than eq. (2.23), the Piola-
Kirchhoff stresses are given by:

ow O aw 10 1)a—Ji (2.28)
a7, aC  aJ, aC > ac | '

where f " denotes differentiation with respect to J 5.

The change of invariants implies that, in principle, the material constants that are
used when W is expressed in /| and /,, must be modified. Yet, the compressibility of
rubbers is usually very small, the deviation of J ; from unity being mostly less than 107
[8], and an insignificant error is committed when the original constants are used in

11



connection with the modified invariants.

A simple form for f, which as we will see in the next chapter is also convenient for
implementation in numerical codes, is obtained by starting from a linear relationship
between the hydrostatic pressure p and the volume change AV':

AV
=AY 2.29)
Vo

with K the bulk modulus. Experimental evidence [5,6] suggests that K is independent of
J 5 for a wide range of pressures, but also seems to suggest that K is a function of J | and
J - When introducing such a dependence, the separability of (2.23) is lost and, therefore,
¥ will be assumed to be a material constant in this study. From the preceding definitions,
it is found that

AV V
= 1=,
Vo Vo

so that (2.29) is rewritten as
-p =K(J3——1). (2.30)

Basically, the hydrostatic pressure is defined as minus one-third of the trace of the
Cauchy stress tensor T:

-p = % tr(T) 2.31)

For purely volumetric deformations, all principal stretches are equal to A, so that the
deformation gradient F is given by

F=Al,

with I the unit matrix. Accordingly, relation (2.18) between the Cauchy and the second
Piola-Kirchhoff stress tensor simplifies to

T= ?Clc,

and the hydrostatic pressure is given by

—p = %7(1&(0)

Furthermore, the contribution of the deviatoric part W™ of the strain energy vanishes
under an all-round uniform pressure p, so that in view of (2.28), the Piola-Kirchhoff

12



stress tensor is given by

aJ

o=2f"(J,-1)—.
>

Using the definitions given in the Appendix, the following expression for the hydrostatic
pressure p ensues for purely volumetric deformations:

-p=f'U3-1). (2.32)

Equating expressions (2.30) and (2.32) results in the following differential equation

KW 3-1)=f"T5-1).

Considering that f must vanish for J 3= 1, this differential equation can be solved to
yield

2
fU3-1)= %K(J3—l) . (2.33)
Substitution of (2.33) in eq. (2.27) results in the strain energy function:
* 1 2
W=W (11,12)+;K(J3~1) . (2.34)

A further simplification occurs if the bulk modulus K is set equal to infinity. Then
J3=1 (or alternatively /5=1) so that /5 —1 vanishes. Since (/5 — 1)2 approaches zero
faster than ¥ tends to infinity, the second term in (2.34) vanishes, and the strain energy
function reduces to

W=W"(,J,), (2.35)

or, sincellzfl,12=J2f0r13:1,

W=W"(,1,). (2.36)

Most currently published finite element calculations [8-11] assume the incompressi-
ble formulation (2.36) to model rubber behaviour. Yet, the assumption of incompressibil-
ity, which is nearly always made in numerical analyses of rubber components, is too
crude for many industrial rubbers. This is shown in Figure 2.2, which shows the depen-
dence of the bulk modulus in the ground state (= the undeformed state) as a function of
the amount of soot. A significant variation of the compressibility with the percentage of
soot in the rubber is observed. Consequently, finite element analyses that & priori assume
incompressibility will not always give a realistic prediction of the stresses and especially

13
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Fig. 2.2. The bulk modulus in the ground state as a function of
the amount of soot for industrial rubbers.

the deformations of rubber components.

2.3 Mooney-Rivlin material representation

The simplest choice for W is a linear function of / pand/,:

W' =K (I,=3)+KI,-3), 2.37)

in which the constants -3 have been introduced to achieve that W be zero in a strain-
free state. Approximation (2.37) for the strain energy function of an incompressible
rubber has first been hypothesised by Mooney [12] and has later been generalised by Riv-
lin [13] to include higher order terms. Relation (2.37) is known as the Mooney-Rivlin
model for incompressible rubbers.

Although the Mooney-Rivlin model has originally been proposed for strictly
incompressible rubbers, it can of course also be used to model the distortional response
of a compressible rubber. For this purpose (2.37) is replaced by

W =K (J,=3)+K(J,-3). (2.38)

Strictly speaking, the constants K | and K, must be modified when replacing (2.37) by
(2.38), but the fact that the deviation of J 3 from 1 hardly ever exceeds 10_4 warrants the
assumption that the same K; and K, can be used in (2.37) and (2.38) for all practical

14



purposes.
To gain some insight in the physical meaning of the material constants K| and K ,,

we will consider the instantaneous stiffness in the undeformed state. To this end, we first
substitute (2.38) in (2.34)
W =K\ =3)+K (= 3)+ 50 3= 1), (2.39)

so that the second Piola-Kirchhoff stresses are given by

s, 3, 8J3}
o=2|K,—+K,—+x(J,-1)—/| . (2.40)
Yac T ?ac 3 ac
Next, we consider a state of pure shear. For such a deformation J;=1, so that (2.40)
reduces to
aJ aJ,
o=2|K——+K,—|,
oC oC

or using (2.24), (2.25) and the fact that pure shear is an isochoric deformation (J 3= 1),

1 N
c=2 K1¥+K2-B_C—_;(Klll+2[(212)¥ . (2.41)

a, al, 813}

Differentiating this expression so as to obtain an incremental relation that defines the
tangential stiffness, it is found that

1 1
— (K J 42K ) ) —— —~(K,— +2K ,——)——| C
3( 171 242 aCZ 3( laC 2aC oC

c=2|K,

) .
31, 914 al, ol 813} )
oC?

With aid of the expressions for ol 1/0C etc. as given in the Appendix we can derive for
the shear stress, say O1,, in the ground state (/; =1,=3), that

Gy = 2K +K,)C 1y (2.42)

In the undeformed state, G}, can be conceived as the true stress rate and C 12 can be
replaced by the engineering shear strain rate y;,. Consequently, 2(K {+K,) has the
meaning of a shear modulus, say WL, when the strains become small.

15



3. Finite element implementation

In this chapter the governing finite element equations will be derived. An approach is
adopted in which different degrees of interpolation are used for the displacement and the
pressure field. The chapter is intended for readers who have been exposed to numerical
treatments before. Readers who are primarily interested in the modelling of rubber com-
ponents with aid of finite elements may omit this chapter and may directly proceed to the
chapter on the determination of material constants.

3.1 Equilibrium equations

As a point of departure for the derivation of the governing finite element equations, we
shall take eq. (2.10), albeit in a slightly modified form:

[2p tr[ -Qe—FTSF] dv — [pdx"gdV — [8x"tdS =0.

|4 aC \4 S
For deformation problems in solid mechanics, this form of the equilibrium equation is
not convenient as it takes the current, hitherto unknown configuration as reference
configuration. For rubber elasticity, where there exists a physically meaningful relation
with the undeformed configuration throughout the entire loading process, the latter
configuration is better suited to this purpose. For transformation of the equilibrium condi-
tion to the undeformed configuration we use conservation of mass for an elementary
volume dV

podVo=pdV,

and we observe that, for conservative loading, the force on an elementary surface dS
remains constant,

with t the traction referred to the surface of the undeformed body dS () (nominal trac-

tion). With aid of these identities, the equilibrium equation can be restated as

9
[2p0tr| ——FT8F| dV— [ pydx"gdVo— [ 8x"tgdS o= 0. 3.1
\% aC Vv

0 0 So

Recalling the definition of the second Piola-Kirchhoff stress tensor (eq. (2.17))

16



de
=205

we obtain instead of (3.1)

[ tr[o’FTSF] Vo~ [ pdx'gdV - [8x"tydS o =0.
VO Vo SO

In consideration of the definition of Y (eqs. (2.4) and (2.5)), the variation of *y reads

Sy= %[FTSFHSFTFJ 3.2)
so that, by virtue of the symmetry of the stress tensor O, the equilibrium equation is now
written as

| tr{o‘&y] Vo~ [ pedx"gdV o~ [8x tdS = 0. (3.3)

Vo Vo SO

Nonlinear calculations must be carried out in a number of small loading steps so as to
ensure stability of the iterative procedure that is employed to solve the resulting set of
nonlinear algebraic equations. To this end we rewrite (3.3) as follows

| tr[(ot +A6)8ry] dVo+ [ pedx'gdVy— [8x'tgdS, =0, (3.4)
Vo Vo So

with AG the increment of the Piola-Kirchhoff stress tensor and ©' its value at time 7. It is
now important to recall that, although all quantities are referred to the undeformed
configuration, the virtual work equation has been set up at ¢’ =¢ +At. This implies that
the variation &y also has to be evaluated for t’=¢ +At and consequently, the spatial
coordinates (xl,xz,x3) that enter eq. (3.4) are coordinates at ¢’ =t + At . Operating on
the position vector X in the deformed configuration in a similar fashion as on the stresses,

Xz+At zx’+Ax,

so that, in view of (2.2), (3.2) effectively reads

17



Sy' T = ﬂ(v&x’ )(xVp)+ (Ve 8x)(x' V)

we can rewrite &y’ "% as
6,Yt +Ar _ 6€+6ﬂ (3.6)

The contribution 8¢ ,
o€ = %[(Véxl )(8XV§)+(V§8X)(XI Vg):| Y 3.7
is not a function of the increments Ax, while &1 is linear in Ax:
.
on=_ [(VéAx)(Bng)+(V§6x)(AxV§)] . (3.8)

Substitution of (3.6) in (3.4) and rearranging we obtain

Jtr(AGSﬁ} dv o+ jtr[o’&n] dvy+ jtr[Aoarn] dv,y=

Vo Vo Vo
[ 8x pogdVy+ [8x'tydS o — [8e'c' AV,
Vo So Vo

In the sequel of this chapter, we will usually write the stress and strain tensors & and 'y as
a vectors instead of as matrices. Then, the preceding equation changes into

[8e'acdv+ [n'o'dV+ [ 8 AcdV =

Vo Vo Vo
T T T _t
[ pdx gdV o+ [8x tdS (- [8e o'dV,, (3.9)
Vo So Vo

In principle, the incremental constitutive relation for hyperelastic materials can be
derived by differentiation of eq. (2.22). Finite elements, however, tend to ‘lock’, not
only in strictly, but in practice also in nearly incompressible media [7,16]. This ‘locking’
phenomenon causes an overstiff solution. Predictions for (nearly) incompressible solids
may be improved by using a separate interpolation for displacements and pressures.
Then, it is more convenient to commence from (2.28) rather than from (2.22):
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ow™ 9y gw* 9/, /5
c=2 + +f'U3=-D—|.
aJ, oC aJ, oC oC

Since a separate interpolation of the displacement and the pressure field is desired,
f’(J3—1)is replaced by —p in accordance with eq. (2.32):

L low” aJ1+aW* d/o 93
a/, oC a7, aC ' acC

) (3.10)

By differentiation of (3.10) we obtain the relation between the stress increment Ao, the
increment Aty of the Green-Lagrange strain tensor and the pressure increment Ap :

A 5
AG = DAY—2Ap—— 3.11)
T-28p—2

where the matrix D contains the instantaneous stiffness moduli,

Fw" oy oly  Pw* Ay Ay Gy 82Jl

D=4 + +
aJ12 dC oC 0aJ,0/, oC oC o/, aC?

+

Fw' 9y oy Fw" Ay Ay w” 82J2 a2J3
+ 2 + > -p E (3.12)
dJ,0J, oC oC aJ 5 oC oC dJ, oC oC

Inserting (3.11) in (3.9) we obtain

a
[8e™DAedV+ [n"o'dV - | 263T6—C3Ap v,y =

VO VO VO
T T T ¢
[ podx gdV o+ [ 8x tdS— [ 8¢ o' dV,. (3.13)
Vo So Vo

In (3.13) the contributions I&TDAndVO and f&nTDAdeO which are nonlinear in Ax
have been omitted. This has no impact on the accuracy of the results provided that the
stresses are obtained from the current strain state with a proper relation (e.g., (2.22) or
(2.28)). It simply serves the purpose of obtaining a properly linearized tangent stiffness
on the left hand side of the equation.
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For the spatial discretization it is assumed that the continuum is divided in an arbi-
trary number of finite elements. Let the continuous displacement field u be interpolated
by polynomials /4, i, etc. Assembling the interpolation polynomials in a matrix H and
the nodal displacements in a vector a, we can formally write (e.g., [15-18])

u= Ha. (3.14)

Furthermore, the relation between the part of the strain increment A€ that is linear in the
displacement increment and Au (note that Au = Ax) reads

Ae = LAu,

with L a matrix that contains differential operators and is derived from eq. (3.7). The
relation between the linear part of the strain increment A€ and the incremental nodal dis-
placements is then given by

Ae =B, Aa (3.15)
and similarly

de =B, da
with B, =LH. Explicit forms of B, matrices are given in [18,19] for various

configurations. Using eq. (3.15) the first contribution to the tangent stiffness can be
rewritten as

[8eDAedv =8a"| [B DB, dV | Aa
Vo Vo

In a similar fashion the second contribution to the tangent stiffness can be rewritten as

[on'c'dv,=8a'| [By, =B, dV| Aa
Vo Vo

where X is a matrix representation of the second Piola-Kirchhoff stress tensor and B,
again contains differential operators [18,19].

The pressure p that enters eq. (3.13) is an additional unknown. It is usually interpo-
lated by a polynomial of a lower degree than the displacements (e.g., [7,16,18]). Assem-
bling the interpolation polynomials for the pressure in a matrix N, we have
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p=Np, (3.16)

with p the continuous pressure distribution and p the values of the nodal pressure. Note
that the nodes at which the pressure is an unknown need not coincide with the nodes at
which the displacements are variables. With the interpolation of (3.16) the third term on
the left hand side is written as

+ 3 Tt 193
28" —ApdVy=8a’ [2B, —NdV,Ap
v, oC v, oC

Noting that x' =0, so that 8x=38u, inserting (3.14)-(3.16) in (3.13), and considering
that the result must hold for any virtual displacement 8a, the following set of nonlinear
algebraic equations is obtained

. . + 93 )
[B.DB,dV+ [ By, B, dV | Aa— szL—aC NdV | Ap =

Vo Vo Vo
[poHgdv+ [HTt,dS - [B/c'dV,, (3.17)
VO So VO

3.2 Weak formulation of the volumetric stress-strain relation

Equation (3.17) generates 2n equations, n being the number of displacement nodes, but
has 2n +m degrees-of-freedom, m being the number of pressure nodes. The missing m
equations can be constructed by virtue of the volumetric stress-strain relation (2.30):

A A
K(Jl3+ F-D+pitA =0,
The weak form of this equation is given by

JIUY ™ =) +ep' " 18pav, =0, (3.18)
VO

with e =k the compressibility. Decomposing in known values at t”=¢ and increments
yields
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— [[AT5+eAp1dpdVy= [[J5 -1)+ep'18pdV,
Vo Vo

Since

[an]
AJ =2 —| A
3 ac) Y

eq. (3.18) can be restated as

oJ
—jzsp[—3] AydVg—e [ApdpdV,= [[(J5-1D)+ep'18pdV,
\%4 aC \4 |
0 0 0

so that, employing (3.15) and (3.16),ﬁlinearizing in the sense that A€ is substituted for Ay
and noting that the resulting expression must hold for any virtual pressure &p , we obtain

_?.{_3._ T _ t taagT
v B, dV Aa—¢[NN'dVAp= [[(J5-1)+ep'IN'dV.(3.19)
Vo Vo

~ [2NT
o

The sets of equations (3.17) and (3.19) generate as much equations as unknowns.
Next, the unbalanced force vector F @

F, =] poHgdV + | H'tydS - | B, c'dv,, (3.20)
VO So VO

the vector Fb ,

F, = [[U4 - +ep' INTdV, (3.21)
Vo

and the auxiliary matrices

K, = [B/DB,dV + [By, ZBy, dV,, (3.22)
Vo Vo
3
T
K, =—[2B, —NdV,, (3.23)
oC
Vo
and M,
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M=-[NNTdv, (3.24)
Vo

are introduced. With the definitions (3.20)-(3.24), eqs. (3.17) and (3.19) can be formu-
lated in a compact manner:

Aa {Fa]
Ap = Fb . (3.25)

A simplification can be achieved when the pressure degrees of freedom are elim-
inated at element level by a static condensation process [16,18]. When applying such a
process in an incremental-iterative procedure, some care must be exercised with regard to

K, Kp

T
Kp eM

the moments that compression of the element stiffness matrix and expansion for the
internal degrees of freedom take place. To demonstrate this, we will describe the local
compression/expansion process of a static condensation procedure in somewhat greater
detail. To this end, we first express the pressure degrees of freedom in terms of the dis-
placements:

Ap =xM'[F, -K Aal, (3.26)
where it is recalled that k=e .. Inserting (3.26) in the first equation of (3.25) yields:
1y T - -1
K, -xK,M'KlAa=F, ~xK,M'F,. (3.27)

The stiffness matrix and the right hand side vector at global level are derived from eq.
(3.27). After solving for the incremental displacements Aa, the pressure increments Ap
at element level are computed from eq. (3.26). It is of utmost importance that the expan-
sion of (3.26) is done with the same matrices Kp and M as that have been used in the
compression of (3.27). This is particularly so when a full Newton-Raphson method is
employed, since the vector F, may considerably deviate from zero during the equili-
brium iterations. The danger of using an erroneous right hand side transpires when it is
considered that the force vectors I, and F, are usually set up at the end of an iteration.
The force vector F, —x Kp M_lFb that is to be used in the next iteration must be com-
puted with the tangential submatrix Kp which is, however, not available until the begin-
ning of the next iteration. Consequently, the right hand side vector for the new iteration
cannot be set up at the end of the old iteration, but can only be calculated after the
tangential stiffness matrices have been set up at the beginning of the new iteration, If
F, —KKP M_lFb is computed with the current, old matrix Kp, the quadratic conver-
gence of Newton’s method is lost.
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O Displacement nodes

x Pressure nodes

Fig. 3.1. Elements with separate interpolation for displacements and
pressures as have been used in this study.

From the preceding discussion it also transpires that the pressures become discontinuous
at the element interfaces. Effectively, this means that there is no longer a need to define
the degrees of freedom of the pressures at the element interfaces [7,16]. Nevertheless, the
pressure degrees of freedom have been chosen to be in the corners of the element for the
plane strain and the axisymmetric elements that have been used in this study. To be pre-
cise, a quadrilateral element with nine nodes for the displacement degrees of freedom,
and four nodes for the pressure degrees of freedom has been used. For the three-
dimensional analyses, an twenty-noded element with a constant pressure distribution has
been employed (see Figure 3.1), although it is recognised that superior elements have
recently been developed for three-dimensional analyses [20].

It is finally noted that strict incompressibility can be enforced by letting the bulk
modulus K go to infinity, or alternatively, by setting ¢ =0. The set of equations (3.25)
then reduces to

I(a Kp Aa F;
= , 3.28
K, 0 |Lap] LF, 29
where F;, is now given by:
F, =[5 -DN"dv,.
Vo

Unfortunately, the structure of (3.28) is unsuitable for most currently available linear
equation solvers because of the presence of zero entries on the main diagonal of the com-
posite matrix. This problem can be circumvented by relaxing the strict incompressibility
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condition and assigning ¢ a small value, e.g., 107%-107%. 1t then becomes unimportant

which function f is selected for the volumetric part of the stored energy function as long
as it is a convex function that satisfies f (1)=0 and f #0 otherwise. For instance, the
function

f=3nU3)

has been used in some of the examples where the strictly incompressible Mooney-Rivlin
model has been adopted (see also [8-10]).

4. Determination of the material constants

In equation (2.37) the strain energy function for the Mooney-Rivlin material representa-
tion has been given. It is the purpose of this Chapter to show how the material constants
K| and K, which appear in (2.37) can be determined from a simple uniaxial elongation
test. In principle, the treatment will be given for a strictly incompressible material. For a
nearly compressible rubber the same constants Ky and K, are used, which implies that in
this case the computed values for K'; and K , are only approximations, albeit very good
approximations, since the influence of the compressibility on the values of K| and K, is
negligible.

For the particular case of simple axial elongation, we set the ratio of the new length
over the original length equal to A (compare the definition of the principal stretches in
Chapter 2). For an incompressible material the volume remains unchanged, so that the
principal stretch ratios A, A, and A are given by:

A=A A=A =A @.1)

Inserting (4.1) in expression (2.41) for the second Piola-Kirchhoff stress we obtain for an
incompressible Mooney-Rivlin model:

Oy = 2K+ 2K 0" = (K 1+ 2K, 10 7) 4.2)
for the axial principal stress and
Gy = 21K | + K (WP 4+ 171 - %(K111+2K212)7»] (4.3)

for either of the transverse principal stresses. In uniaxial tension, G,, must vanish,
whence

25



A-N7
d
/
S
,
7
experimental
4 -
ta—— Mooney-Rivlin
’
Il L J
0 05 1 1.5

N
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%(K I 42K, 1) =K+ K02 +07h)],
Substitution of this expression in (4.2) yields

6y, =20 22 =K+ 0K (4.4)

According to eq. (2.18) the relation between the Cauchy stress, which gives the force per
unit deformed cross section, and the second Piola-Kirchhoff stress is given by

2
Ty =A0y,

so that
T =20 A HIK | + 4K (4.5)

The corresponding force ' per unit unstrained cross-section becomes:
F =1, M =20 -AD)K, + X 'K,
11 - 1 24

or, dividing by 2(A—X"2) ,

26



F

o K. o

Fig. 4.1 presents a typical result for a rubber specimen undergoing a uniaxial defor-
mation. In this figure, %F /(7»——7»_2) is plotted as a function of AL It is observed that

the Mooney-Rivlin model (the dash-dotted line in Figure 4.1) is only able to describe the
material behaviour reasonably for values of A7 that range from 0.90 to 0.45, but that for
other values of ™! deviations occur between theory and experiment.

According to (4.6) the slope of the Mooney-Rivlin approximation determines the
constant K ». Having estimated K ,, the second constant, Ky, can be determined by insert-
ing an arbitrary pair of F' and A in eq. (4.6).

The actual execution of the elongation test requires some care. In the examples to be
discussed in the next chapters, the following procedure has been followed. First, the sam-
ple is heated to the test temperature (23, 40, 65, 75°C) for 15 minutes. Then, tension-
bars, either model C according to the ASTM D412 code, or samples with a length of 100
mm. and a width of 10 mm., are prestressed five times up to an extension ratio of 2 with a
deformation rate of 100 mm/min. A Zwick drawbench type 1445 has been used for this
purpose. The Mooney-Rivlin parameters K ; and K, are calculated from a subsequent
test up to an extension ratio of 1.90 with a drawbench speed of 1 mm/min. The prestress-
ing is necessary because there is a considerable decrease in K, during this treatment. The
amount of decrease of K, depends on the kind of filler that is used. Table 4.1 lists the
influence of various kinds of filler on K| and K, for S.B.R. rubber.

Table 4.1. Influence of filler on decrease in K ;, K 5-values for a S.B.R. rubber [21].

Filler first cycle second cycle
K [IN/mm?] | K,[N/mm’] | K, [N/mm®’] | K,[N/mm’]
SAF 0.26 1.04 0.23 0.43
HAF-LS 0.20 0.64 0.18 0.34
HAF-HS 0.24 0.84 0.24 0.37
GPF 0.22 0.64 0.19 0.48
SRF 0.26 0.58 0.15 0.39
No filler 0.13 0.17 0.12 0.16
HAF = High Abrasion Furnace SAF = Super Abrasion Furnace
LS = Low Structure GPF = General Purpose Furnace
HS = High structure SRF = Semi Reinforced Furnace
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5. Suspension ring

This chapter deals with the first of the three examples that are reported in this study. It is
emphasised that all three examples relate to experience from practical applications. In
this respect the present study differs from most other studies that are reported in the
literature, since the examples contained therein are usually of a more academic nature.
The example discussed in this chapter is a suspension ring which is prestressed by an
internal gas pressure. Since this type of loading primarily induces tensile stresses in the
suspension ring, stability problems are not encountered, although the deformations
become quite large.

5.1 Description of the problem

The suspension ring is an important feature of the visco-seal that has been developed by
Neratoom BV (Figure 5.1). The purpose of the seal is to prohibit transportation of gas
from room A to room B. Due to small out-of-balance vibrations of the driving-shaft some
displacement in the seal will remain, which, without precautions, will damage the visco-
seal. The function of the suspension ring is to reduce the displacements of the rotating
inner bush of the visco-seal.

The high demands made upon the suspension ring necessitate an investigation of the
stress distribution and the displacements of a number of designs under operating condi-
tions. From practical experience it is known that the rubber-steel bonding and internal
tearing of the rubber product often cause trouble. A proper assessment of the different
geometries requires that special attention be paid to the reliability of the rubber-steel
interface. The danger of separation of the rubber from the steel driving-shaft can be
reduced by enforcing a homogeneous shear stress distribution and avoiding tensile stress
concentrations near the rubber-steel interface and the free surface with the gas room.

5.2 Design conditions

For the analysis of the mechanical behaviour of the suspension ring the design conditions
as listed in Table 5.1 are of interest. With regard to these data the following remarks are
made. The quoted temperature range is used to determine the values of the material pro-
perties. In other words: the stress-strain relation is influenced by the temperature in the
sense that the constants K| and K, of the Mooney-Rivlin strain energy function are
dependent on the temperature (see §2.3 for the description of the model and Ch. 4 for the
determination of the constants). Thermal expansion and shrinkage have not been taken
into account in the calculations. The centrifugal forces as introduced by the rotation of
the visco-seal, are, compared with the internal gas pressure of 5.6 bar, very small and are
therefore neglected. Consequently, only load related to the internal gas pressure is
applied in the computations.
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Fig. 5.1. Construction detail of the suspension ring.

Table 5.1. Design conditions of suspension ring.

Temperature range: 20 - 100°C

Internal gas pressure: 5.6 bar (room B)

External gas pressure: 0.0 bar (room A)

Speed of revolution: 50 - 960 r.p.m.

Lateral stiffness: less than 600 N/mm

Overall axial load: less than 1000 N
(depending on the inner diameter
of the suspension ring).

5.3 Results

In this study four geometrically different models have been analysed as to come to an
optimal design of the rubber product from a engineering point of view. The first model,
which is shown in Figure 5.2 together with the other designs, is the primary or original
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Fig. 5.2. Analysed designs of the suspension ring.

design of the suspension ring, while the models two, three and four are successive
improvements. The models are loaded by a uniformly distributed pressure along the
boundary CDF, and a vertical, downwardly directed, concentrated force in point G (see
Figure 5.3 for the location of these points). The two steel parts of the visco-seal, which
are connected by the rubber suspension ring, can only undergo a relative vertical dis-
placement. This is accomplished by supporting both degrees-of-freedom of the nodes of
the element meshes along the border CAB, tying the vertical degrees-of-freedom of the
nodes along the boundaries FGH to the vertical displacement of point G and by support-
ing the horizontal degrees-of-freedom along FGH. For some of the designs the separa-
tion of the rubber from the steel is simulated by releasing some supported or tyed
degrees-of-freedom near the points C and F. An incompressible Mooney-Rivlin stored
energy function has been utilised with the constants K,=0.227 N/mm2 and
K,=0.376 N/mm’.
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Fig. 5.3. Element mesh and significant points for model 1.

The four designs have been modelled with plane strain elements as well as with
axisymmetric elements. As already noted in Ch. 3, nine-noded elements with a bilinear
pressure distribution have been used. Most of the plane strain calculations have been car-
ried out with the reduced 2*2 integration scheme. At higher loading levels such a rule
can result in spurious kinematic modes. An example is shown in Figure 5.4. To reduce
the possibility that spurious modes occur, a 3*3 integration scheme can be used. Even for
such an integration rule, the possibility that such modes are found can not be eliminated
completely (see e.g., [22,23]), but the chances are reduced significantly when compared
to 2*2 point Gaussian integration. A drawback of using a ‘full’ 3*3 integration rule is
that the solution may become overstiff. In particular, as already alluded to in Ch. 3, there
exists the possibility of ‘locking’ for incompressible or nearly incompressible materials
[7,16,24]. A comparison for some of the calculations showed, however, that the displace-
ments of a model with a 2*2 integration rule hardly exceeded those of the same model
but calculated with a 3*3 integration rule (Table 5.3). Another disadvantage of 3*3 point
integration is the fact that the stresses may be less accurate than for 2*2 integrated
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Fig. 5.4. Spurious kinematic mode encountered in an analysis for model 1.

elements. Table 5.4 shows that in the case considered this effect must have been of minor
importance, since the stresses are of the same order.

5.3.1 Model 1

For the first geometry, the original design, the following calculations have been carried
out:

A. Calculation of the axial displacement due to a known axial force.

B. Calculation of the displacement and stresses due to a internal gas pressure of 5.6 bar
at a temperature of 65°C.

C. Calculation of the displacements and stresses due to the internal gas pressure of 5.6
bar at a temperature of 65°C, but with a simulation of the separation of the rubber-
steel interface.

32



— Results under A: First the result are briefly presented for the case of a concen-
trated axial force. This calculation has been carried out to verify the theory and the
applied material constants determined on a laboratory sheet. The results have been sum-
marised in Table 5.2, and show that there is a good agreement between theory and prac-
tice. This outcome gives confidence in the results of the other calculations.

Table 5.2. Displacements u, at point G for load case A.

load [N] | calculated [mm] | measured [mm)]

1250 14 1.6
2500 3.0 3.1

— Results under B: In Figure 5.5 the deformed mesh and the distribution of the Cau-
chy stresses are given for the first geometry at a load level of 5.6 bar, which load level is
defined to coincide with a load factor of 1.0. Figure 5.5 shows that the true (Cauchy)
stresses unfortunately reach a maximum at places where, due to the manufacturing pro-
cess, it is difficult to obtain a good bonding between rubber and steel (near point S). The
critical bonding places are loaded in tension, while, from a engineering point of view, it
is preferable that bonding surfaces are subjected to compressive or shear stresses. From
Figure 5.5 it also appears that the stresses in the rubber elements which are surrounded
by steel remain low.

— Results under C: This calculation has been carried out to investigate whether
imperfections in the bonding between rubber and steel will lead to failure of the suspen-
sion ring. To simulate a defect, a few supported nodes on the boundary between the
points F and S have been released. The results of the calculation are shown in Figure 5.6.
Comparing the results with those for a perfect bonding, it is observed that the geometry is
very sensitive even for small flaws in the bonding. The peak stresses in the critical area
near point S are increased, and it is unlikely that a process in which the rubber is ripped
off the steel will be arrested.

The numerical values of the displacements and the stresses near points D and E and
the maximum stress near the rubber-steel interface are summarised in Tables 5.3 and 5.4.
Because of the sensitivity of the original design for imperfections in the rubber-steel
bonding, this design must be rejected. A decrease of the high stresses near points S and F
can probably be achieved by enlarging the skirt in the triangle DFS. The second
geometry is adapted in this direction.

5.3.2 Model 2

For the second model (Figure 5.7), the following calculations have been carried out:
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Fig. 5.5. Deformed and undeformed element mesh (left), and Cauchy stresses (right)
for geometry 1 at a load factor of 1.0. As in the subsequent pictures of deformed
specimens the deformations have not been scaled (i.e., are not exaggerated).

A. Calculation of the displacements and stresses due to an internal gas pressure of 5.6
bar at a surrounding temperature of 65°C .

B. Calculation of displacements and stresses, under the same loading case as men-
tioned in A, due to separation of the rubber-steel interface.

— Results under A: Figure 5.7 shows, that the tensile stresses still reach a maximum
on places where, due to manufacturing process, it is difficult to obtain a good bonding. It
is recalled that, from a engineering point of view, it is highly desirable to have compres-
sive or shear stresses in bonding areas rather than tensile stresses. Just as in the original
design it appears that the elements which are surrounded by the steel are lightly stressed.
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Fig. 5.6. Deformed and undeformed element mesh (left), and Cauchy stresses (right)
for geometry 1 with imperfections at a load factor of 1.0.

— Results under B: This calculation has been carried out to analyse whether
insufficient bonding on the end faces will lead to failure. The unsupported nodes which
simulate the ripping-off of the rubber-steel interface are located near point C of Figure
5.3. The deformations are similar to those of the first geometry, but the stresses near the
crack tips have not increased compared with the undamaged model. From Table 5.4
(maximum stress near the bonding surface) it appears that if de-bonding occurs, this will
not cause failure of the rubber structure.

To sum up, it appears, that this geometry is less sensitive for partial failure of the
rubber-steel bonding than the first design. Nevertheless, the rubber material attached to
the cut in the steel of the visco-seal still remains lowly stressed. The next step in the
design procedure is to omit these unused rubber parts. This results in the third geometry.
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Fig. 5.7. Deformed and undeformed element mesh (left) and Cauchy
stresses (right) of geometry 2 at a load factor 5.0.

For model 3 only a limited number of calculations have been carried out. The stress dis-

tribution due to internal gas pressure has been determined, but a failure analysis of the
rubber-steel bonding has been omitted.

In Figures 5.8 and 5.9 the deformations and the stress distribution are given. This
geometry gives a homogeneous stress distribution in the central part. Owing to the pres-
ence of compressive stresses at the end of the rubber-steel bonding, it is expected that a
small imperfection of the bonding will not lead to a progressive failure of the suspension
ring. Yet, there are still areas where the stresses remain low, and there is an area between
the points F and G which shows high tensile stresses. As a result of the incompressibility
of the rubber and the relative long skirts of the ring the radial displacement will increase.

A further improvement of the design leads to the fourth geometry.
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5.3.4 Model 4

Figures 5.10 and 5.11 give the displacements and the stress distribution of geometry 4. In
this model the low stressed areas have been ‘cut-off’ and replaced by steel. The advan-
tage of this replacement is that the bonding area increases and that the radial displace-
ments decrease. The numerical results of the calculation are again given in Tables 5.3
and 5.4.

So far, the calculations have been carried out for a conservative internal gas pressure.
However, in reality the direction as well as the area of the surface on which the gas pres-
sure acts will change. Since the gas pressure is constant the change in direction and area
affects the total force that is exerted on the suspension ring. The effect of this
phenomenon, known as non-conservative loading, has been investigated for this model.
A quantitative comparison for the displacements and Cauchy stresses is summarised in
Tables 5.5 and 5.6 for some significant points of model 4. It is observed that, for the
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Fig. 5.9. Cauchy stresses for geometry 3 at load factor 5.0.

calculations with a non-conservative load, the radial displacements of the inner boundary
increase and that the radial displacements of the outer boundary decrease compared with
the results for conservative loading. As a result thereof, a more homogeneous stress dis-
tribution in the middle cross section is obtained. Because of the enlarged loading area
the total resulting force will increase and a larger displacement can be expected com-
pared with the calculation with a conservative loading. The increased stresses in the
middle cross section can be explained in a similar way, since the equilibrium condition
must be satisfied.

The deformations shown in Figure 5.10 and the Cauchy stresses shown in Figure 5.11
have been calculated for a non-conservative loading. It is observed from Figure 5.10 that
the inner boundary CDF remains a proper circle, while in calculations with a conserva-
tive loading this boundary attains an ellipsoidal shape.
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Fig. 5.10. Deformed and undeformed mesh of geometry 4 at a load factor 5.0.
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Fig. 5.11. Cauchy stresses for geometry 4 at a load factor 5.0.
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Table 5.3. Radial Displacements u, of the suspension ring in mm: load factor = 1.0.

plane strain | axisymmetry

PLACE 2%2 2*%2 3%3
MODEL 1
point D 2.86 - 2.16
point E 2.04 -- 0.98
imperfect bonding:
point D 3.43 - 2.52
point E 2.52 -- 1.33
MODEL 2
point D 1.85 1.75 1.5
point E 1.25 1.17 1.14
imperfect bonding:
point D 2.01 -- --
point E 1.37 -- --
MODEL 3
point D 2.08 -- 1.96
point E 1.42 -- 1.31
MODEL 4
point D 1.41 132 1.32
point E 0.66 0.61 0.61

10 -

N/mm?
8+
Model 3
6
41 Model 1
Model 2
2k

0 300 400 600 800 1000

——» load factor

Fig. 5.12. Evolution of greatest Cauchy stress near steel border for each design.

40



Table 5.4. Axial Stresses 0, in the suspension ring in N/mmz: load factor = 1.0.

plane strain axisymmetry
PLACE 2*2 2%2 3*3
MODEL 1
point D -0.41 -- 0.013
point E 0.53 -- 0.83
max. stress on the bonding surface 1.51 -- 1.67
imperfect bonding:
max. stress on the bonding surface 3.05 -- 3.05
MODEL 2
point D -0.33 -0.34 -0.38
point E 041 0.44 0.30
max. stress on the bonding surface 0.75 0.78 1.19
imperfect bonding:
max. stress on the bonding surface 0.75 -- --
MODEL 3
point D -0.28 -- -0.18
point E 0.48 -- 0.51
max. stress on the bonding surface 0.69 -- 0.85
MODEL 4
point D 0.06 0.092 0.064
point E 0.47 0.48 0.49
max. stress on the bonding surface 0.25 0.18 0.15

Table 5.5. Radial Displacements 1, for model 4 in mm: load factor = 1.0

axisymmetric stress situation, 3*3 integrated.

PLACE | conservative | non-conservative
point D 1.32 1.74
point E 0.61 0.35

E)

Table 5.6. Axial Stresses G,, for model 4 in N/mm2: load factor = 1.0,
axisymmetric stress situation, 3*3 integrated.

PLACE conservative | non-conservative
point D 0.064 0.65

point E 0.49 0.85

max. stress on the bonding surface 0.15 --
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5.3.5 Concluding remarks

Originally, the models have been analysed with plane strain elements. A comparison
(Tables 5.3 and 5.4) shows that the analyses for an axisymmetric stress situation result in
a stiffer response. This is because of the introduction of the tangential stress band in the
axisymmetric models. The radial displacements in the middle cross section are smaller,
while the stresses are mostly larger. However, the differences between the results of the
calculations with axisymmetric and those with plane strain elements are less important
than the choice of the strain energy function and the selection of the appropriate material
parameters.

The models 1, 2, 3 and 4 have been produced and tested for a lifetime evaluation in a
pilot plant. The test results revealed only marginal differences from the calculations.
According to the calculations, the fourth design showed the best behaviour. The
obtained homogeneous stress distribution provides a solid basis for a sound design and an
extended life compared with the previous designs. This is shown in Fig. 5.12, which
gives the highest tensile stresses near the rubber-steel interface of the four models. It is
mentioned that the shear stresses in the fourth model exceed the normal stresses, but, as
stated before, the rubber-steel interface is able to sustain much higher shear stresses than
normal stresses.

6. Shock cell

The example discussed in this chapter is a shock cell which is loaded primarily in shear.
Numerical experiments have been carried out without and with predefined cracks in order
to investigate whether crack initiation would lead to progressive failure. The numerical
results are furthermore compared with experiments and with a grossly simplified hand
calculation.

6.1 Introduction

In civil engineering shock cells are used as a part of heavily loaded structures like
fenders near sluices or in mooring structures. An example is the application of shock
cells in the lockgates of the Eastern Scheldt Storm Surge barrier, which are loaded by
wave attacks that are not necessarily perpendicular to the barrier. This results in an
indirect displacement of the lockgates. Shock cells have been used to prevent damage
accumulation between the steel lockgates and the concrete structure. In Figure 6.1 the
function and the position of the shock cell in the structure is shown.

The shock cells have been manufactured by Royal Bakker Ridderkerk BV and consist
of two enclosing steel cylinders of different diameters. The cylinders, which can move
with respect to each other along the axis of symmetry, are connected by a rubber struc-
ture according to the sketch of Figure 6.2. The inner cylinder is supported by the barrier,
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Fig. 6.2. Geometry and loading of the shock cell.

while the outer cylinder is loaded by the wave attacks on the gates. This load case can be
modelled by applying a force or a prescribed displacement on the outer cylinder parallel
to the axis of symmetry. Because displacement control usually results in a faster conver-
gence, the latter possibility has been chosen.

6.2 Calibration of the numerical model

In the calculations for the shock cell the incompressible Mooney-Rivlin material model
has been used. The material parameters have been determined independently at the TNO
Plastics and Rubber Research Institute (KRI-TNO) and at Rijkswaterstaat (RWS). The
parameter determination at Rijkswaterstaat was based upon experimental data of the
manufacturer of the shock cells, while the TNO Plastics and Rubber Research Institute
has carried out independent elongation tests. Table 6.1 lists the values of the parameters
K, and K, for a virgin as well as for a pre-stressed material for both measurements. A
difference is observed between both parameter identifications, but for the type of
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Table 6.1. Material parameters for the Mooney-Rivlin model.

Determined by | K 1,virgin K 2,virgin K 1,pre K 2,pre
(Nmm2] | [Nmm?] | [N/mm?] | [N/mm?]

RWS 0.334 0.475 —-- ----

KRI-TNO 0.258 0.618 0.317 0.296

deformation to which the shock cell is subjected (mainly shear) this discrepancy is not
considered to be important. For pure shear only the sum of K ; and K, is of interest as
has been demonstrated in Chapter 2 (eq. (2.42)). When the values of K 1,virgin and
K 2,virgin from Table 6.1 are added for the Rijkswaterstaat as well as for the IZ(RI-TNO
measurements, only a slight difference remains, namely 0.809 vs. 0.876 N/mm™. So, the
results of an analysis of the shock cell will be virtually the same for both sets of con-
stants. In the final analysis the material constants as determined for a prestressed material
have been used (Table 6.1).

To check the finite element model and the adopted Mooney-Rivlin constants, two
simple tests calculations have been carried out for different geometries and have been
compared with analytical solutions. First, the upper edge of a rectangle with a length
L =295 mm and a height H =126 mm is displaced horizontally while the lower edge is
supported. Secondly, a parallellogram with the same length and height and an internal
angle of 22.5° is loaded in the same way. Both geometries and their prescribed deforma-
tion are shown in Figure 6.3.

According to the analytical solution of Chapter 2 the total force of a rubber specimen
loaded in pure shear is given by:

F=2(K;+K,) L tand 6.1)
with ¢ the angle of rotation of the sides of the rectangle and parallellogram, and L the
length of the upper edge. The angle ¢ can be calculated from the horizontal displace-
ment u of the upper edge according to tan¢ = u/H . The maximum axial displacement
that the outer cylinder of the shock cell can undergo, is # =104.71 mm. Substition of
this value in (6.1) gives for the Mooney-Rivlin constants of Rijkswaterstaat
F = 396.2 N. The finite element calculation gives a total horizontal force of 396.8 N,
which is within 0.2% of the hand calculation. For the second geometry a horizontal dis-
placement ¥ = 104.71 mm gives a angle of rotation ¢ = 31.7°. The same approach now
results in F =329.7 N while the numerical analysis results in a total force
F, omp = 319.4 N. For this geometry the difference between the analytical and computer
calculation is thus 3.1%. These comparisons show that the differences between the finite
element model and the hand calculation are small, at least with respect to the global
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Fig. 6.4. Total force in axial direction for the undamaged shock cell.

behaviour of the structure. However, it is not possible to accurately predict the peak
stresses by a hand calculation.

Apart from the computer simulation and the analytical solution, an experimental
measurement of the stiffness of the shock cell has been made. In this experiment the
axial force has been determined as a function of the imposed axial displacement. The
resulting force-displacement relation is represented in Figure 6.4 by the solid line. The
other two curves of Figure 6.4 represent numerical results respectively for an undamaged
model and for a model with predefined cracks (Figures 6.5 and 6.8). The model with
predefined cracks responds somewhat weaker than the undamaged model, but the differ-
ence is small. Both solutions are in close agreement with the experiment.
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Fig. 6.6. Cauchy stresses at ultimate load.

6.3 Results
6.3.1 Undamaged shock cell

In the preceding section the correlation between numerical and experimental results of
the global behaviour of the shock cell turned out to be rather good, which gives
confidence in the calculated stresses. Figure 6.5 shows the original element mesh (the
dotted lines) and the deformed model at ultimate load, which is defined as the loading
when the maximum displacement of the outer cylinder is reached. The stress distribution
at the same load is given in Figure 6.6. This stress distribution reveals that the largest
stresses occur in the corners of the structure.

When we scrutinise the principal stresses in the Gauss points of one element more
closely, a slight checker-board pattern in the stress distribution is observed. The stresses
near the corners of an element, which is integrated with a 3*3 scheme, deviate from the
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Fig. 6.7. Load versus Cauchy stress in some critical points.

other stresses which are all in the same range. The high peak stresses in the corners of the
shock cell can be attributed to this checker-board stress distribution, and, therefore, do
not have significance for the interpretation of the mechanical behaviour of the shock cell.
An improved stress distribution can be obtained if a linear instead of of a bilinear inter-
polation of the (discontinuous) pressure field is used [7,16].

In Figure 6.7 the greatest principal Cauchy stresses points have been plotted as a
function of the displacement factor of the outside cylinder for the following points: the
intersection of the left boundary and the bottom (henceforth denoted as point A), the
middle of left boundary (point B) and the intersection of the left boundary and the top
(point C). The tensile stress near point A amounts 6.5 N/rnm2 for a displacement factor
of 1.0 and increases even up to 18 N/mm™ for a displacement factor of 1.6, while the
allowable tensile stress of this rubber compound is about 2 N/mmz. Tearing of the rubber
in the corners of the shock cell is therefore very likely. A next step in the analysis is to
simulate the internal tearing process of rubber by introducing some predefined cracks.

6.3.2 Shock cell with predefined cracks

The predefined cracks near the corners of the shock cell have been modelled in the same
manner as in the preceding analysis of the suspension ring. At the boundary of the first
and second row of elements in the mesh refinement near point A some nodes are added at
same place as the original nodes. In this way the upper edge of the first row of elements
can undergo an independent displacement relative to the lower edge of the second row of
elements.
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Fig. 6.9. Cauchy stresses at ultimate load.

Figure 6.8, which gives a deformed and an undeformed element mesh, shows that the
two cracks are wide open at a displacement factor of 1.0. Figure 6.9 gives the
corresponding stress distribution. Figures 6.8 and 6.9 suggest a continued tearing pro-
cess, which is confirmed by value of the major principal stress near the crack tip (point
D): 4.8 N/mmz. The evolution of the Cauchy stress is summarised in Figure 6.10 for
points A, B, C and D.

In summary, we can conclude that there is a close agreement between the numerical,
analytical and experimental results with regard to the overall behaviour of the shock cell.
A finite element calculation is particularly useful for a prediction of the peak stresses that
occur near the corners of the rubber specimen.
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7. Three-dimensional analysis of a supporting block

The two examples discussed in the preceding chapters are loaded mainly in tension (the
suspension ring) and in shear (the shock cell). The numerical results for the suspension
ring and for the shock cell only differ slightly from the experimental results. In this sec-
tion the attention will be confined to the simulation of the structural behaviour of a
rubber specimen that is primarily loaded in compression. The example discussed in this
section is a supporting block for bridges and other heavily loaded structures. The
Mooney-Rivlin strain energy function extended for compressibility has been employed to
calculate the stresses and deformations. The deformations have been computed for vari-
ous values of the bulk modulus and the material constants K'; and K ,,.

7.1 Description of the problem

The supporting block is a layered rubber-steel package of 200*100 mm and consists of
two rubber layers of 33 mm thick, separated by a steel plate of 6 mm. The purpose of the
calculation is to compare the calculated and measured forces and deformations, and to
investigate whether or not a compressible form of the strain energy function results in a
better numerical simulation of the mechanical behaviour of rubberlike materials in
compression. The comparison between the calculated and the measured values is carried
out for a uniform compression, which is obtained by prescribing a uniform vertical dis-
placement of the upper steel plate.
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Fig. 7.1. Deformed and undeformed element mesh of the supporting block
at a vertical displacement of 7% of the height.

The example is quite interesting, since apart from problems that relate to the constitu-
tive relation for rubberlike materials, difficulties were encountered in obtaining a prop-
erly converged solution. It appears that relatively fast converging solutions can be
obtained for extensions up to several hundreds of percents, while convergence is hard to
achieve only after a few percent compression.

7.1.1 Calculations and measurements of the supporting block

The finite element model and the state of deformation under compression is given in Fig-
ure 7.1. By virtue of three-fold symmetry only one-eighth of the geometry has been
modelled. Because of the expected large strains near the free edges of the block the ele-
ment mesh has been refined at that place (Figure 7.1). For the finite element modelling a
twenty-noded three-dimensional element with one internal pressure node has been used,
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Fig. 7.2. The total force as a function of the vertical displacement
for various values of the bulk modulus K.

which results in a total of sixty-one degrees-of-freedom. The steel plate at the upper side
of the block has been modelled with eight-noded plane stress elements.

The load-deflection curves from the measurements and from the calculations, which
have been carried out for a logarithmic range of values of the bulk modulus K, are given
in Figure 7.2. The results in this figure have been obtained with K| =0.16 N/mm” and
K,=0.49 N/mm2 as constants of the Mooney-Rivlin strain energy function. When the
the bulk modulus is chosen in the same order as the Mooney-Rivlin constants, say
k=10 N/mmz, a rather soft response is obtained. For high values of the bulk modulus ¥
the contribution of deviatoric stiffness, which can be related to the sum K+ K,
becomes less important. The load deflection diagram for ¥ = 1000 N/mm2 is almost the
same as the diagram for k¥ = 10 N/mmz. In Figure 7.3 the influence has been plotted of
a variation of the sum K, + K,, while the bulk modulus has been kept constant at

= 1000 N/mm?. When the sum is increased from 0.65 N/mm? to 0.75 N/mm? the sup-
porting block reacts significantly stiffer. It is mentioned that with a compressibility
k=100 N/mm2 a similar shift of the load-deflection curve has been found.

In addition to the force-displacement relation, the horizontal displacement of the mid-
point on the longest side of the rubber block has been recorded. The results of the meas-
urement and the calculations are presented in Figure 7.4. Again, no difference is found
when K is increased from 1000 to 10° N/mmZ.

Because of the large deviation between the measured and calculated horizontal dis-
placement, a global volume check has been made for one quarter of the block with a bulk
modulus ¥ = 1000 N/mmz. For the volume check the upper plate is moved downwards
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over 2 mm. The calculated horizontal deformations have approximately a quadratic
shape over the height and the displacements along the two sides are assumed to vary
linearly. The original volume of the block is 165,000 mm® and the displaced amount of
rubber at the top is 2*100*50 = 10,000 mm°. The estimated displaced amount of rubber
along the short side is 2,400 mm° and 5,600 mm’ along the long side. This approxima-
tion results in a volume decrease of about 2,000 mm° or 1.2%.

On the other hand an analytical estimation can be made for the volume decrease
when a vertical displacement of 2 mm of the steel plate is enforced. According to Figure
7.2 the force at 2 mm vertical displacement is about 4 kN for a quarter of the block. This
results in a hydrostatic pressure of about 0.8 N/mmz. According to equation (2.29) this
pressure level requires a bulk modulus that is smaller than ¥ = 100 N / mm? o as to
obtain a volume decrease of about 2,000 mm?. This is consistent with the outcome of the
numerical analyses.

The horizontal displacements that have been recorded in the measurements therefore
suggest an extremely compressible material behaviour. To obtain a better approximation
of the lateral displacement a very low value for the bulk modulus and very high values
for K| and K, must be used in a numerical analysis. Nonetheless, such values for K , K,
and K, are unrealistic. At the present stage it can only be concluded that experimental
evidence suggests that the compressibility of rubber can not be neglected as is often
done, but that the extreme compressibility recorded in the experiment can not be
explained from calculations in which accepted values for the bulk modulus have been
substituted.
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8. Concluding remarks

In this article a rather comprehensive account has been given of the possibilities of finite
elements to predict deformations and stresses in rubber structures. Constitutive models
for rubber, the governing finite element equations, the parameter determination, and a
number of applications have been discussed.

Contrary to most studies that have been reported in the literature, the compressibility
of rubber is not necessarily neglected. Experimental evidence contradicts such a
hypothesis as has for instance been shown in one of the examples. The present formula-
tion employs a separate interpolation of the displacement and the pressure field to reduce
the danger of ‘locking’ of finite elements in (nearly) incompressible media. A strictly
incompressible solid is easily obtained within this formulation simply by setting the
compressibility equal to zero.

The numerical results of the examples have been compared with experiments. In gen-
eral, the agreement appeared to be rather good. Yet, it would be incorrect to suggest that
the discussed techniques can be used easily and in a routine-like manner. Calculations as
described herein require skill and knowledge to be carried out successfully. The advan-
tage of numerical tools is that, once the computer code is available, a number of variants
can be analysed quickly and understanding is built up how the design can be altered such
that for instance undesirable peak stresses are avoided.

With the models described in this article a large variety of rubber problems can be
solved numerically. However, it is definitely not suggested that accurate predictions of
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deformations and stresses can be made for al/l problems involving rubberlike material
behaviour. To broaden the class of problems which can be solved reliably, more research
has to be done with respect to the numerical treatment of rubber components in the
compressive regime since we then face the problem of bifurcations and lack of stability.
Also, additional numerical tools must be implemented to model contact problems, tearing
of rubber specimens, and reinforcement in rubber structures.
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Appendix: elaboration of incremental equations for 3D-analysis
ol dl, ol 5

Writing the derivatives ——, —— and ——_ as vectors, we obtain
oC oC oC
()
1
1
8]1 1
—_— = (A.1)
oc |0
0
0
( )
Cp+Cas
Cy+Cyy
al, C+Cyp
— = (A.2)
oC -Cy
- C32
-C 13
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oC

\

CpC33=Cp3Cyy

N

C33C11=C3Cy
C11Can=C1Coy
C23C31=CC33
C31C1=C3Cyy

C12C31=C13Cqp

(A.3)

57





