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Abstract

The scatter in observed service lifes of building structures is very high. Designing an
optimal structure in relation to durability is therefore not an easy task. This paper
investigates whether reliability analysis can be used to solve the problem. Essentially
the same techniques are used as those which have proven to be successful as a design
tool for ultimate and serviceability limit states without deterioration effects. Attention
is given to the mathematical modelling of deterioration mechanisms, the probabilistic
modelling of uncertainties and scatter and the economic consequences of design, main-
tenance and damage. As an example a reinforced concrete slab for an outdoor gallery of
an apartment building is analysed for the limit state of corrosion of the reinforcement.



Durability of buildings: a reliability analysis

1 Introduction

In principle, a building has a finite service life. After a number of years a building is
judged to be obsolete and is then demolished or radically altered (renovation). Aging
and deterioration of component parts of a building may also occur, leading to their
repair or replacement. Deterioration may relate to various aspects such as aesthetic
appearance, comfort, serviceability and safety of structural members, finishes and
fittings, installations and services (piping, wiring, etc.).

In new building construction, but also in the case of conversion or repair, it is impor-
tant to have a proper conception of the various deteriorative aging processes already in
the design stage. In this way some idea of the durability of the building is obtained, i.e.,
its ability to function satisfactorily for a certain length of time. These processes are
associated with external influences, the mechanisms through which deterioration is
brought about, and the rate at which deterioration proceeds. This rate can never be
accurately predicted. It involves stochastic processes, so that it is necessary to take
account both of the average service life and of the scatter with respect to this average. In
this context the concept of technical service life is applied, as distinct from other types
of service life such as the economic or the social service life.

Besides having insight into the deteriorative aging processes, it is also necessary to
know how the durability of different parts or components should be interadjusted. This
knowledge, plus information on construction cost and on maintenance and operating
expenses, will provide elements for the solution of optimization problems arising from
the need to build economically.

These matters show a strong similarity [1] with another set of problems associated
with building construction, namely, the safety of buildings and other structures. In this
context, safety denotes: the capacity of a structure (or part thereof) to resist, with a
sufficient degree of certainty, the occurrence of failure in consequence of various poten-
tial hazards to which the structure is exposed. In that case, too, the problem involves a
number of structural members and various loads, with different ways in which the struc-
ture as a whole (or its parts) will respond to the loads. The loads, responses and strength
are likewise stochastic quantities. The safety criteria for the various members and for
the various loads must be duly interadjusted. The fundamental approach adopted for
the purpose comprises, among other principles, the optimization of the cost associated
with achieving a particular degree of safety.

In order to apply a systematic and rational approach to assessing the safety of a struc-
ture, risk and reliability analyses are employed. It has been found that a similar
methodology can advantageously be applied to the assessment of the serviceability of
structures. In that case serviceability denotes the extent to which a structure satisfies
the requirements associated with the normal utilization of it. The requirements may, for
example, relate to deflections of structural members or to aesthetic features.



Experience gained in connection with this has highlighted a number of advantages.
One of the features of the method is that it leads to a sensitivity analysis, i.e., the most
relevant parameters relating to the scatter in a problem are quickly distinguished. For
this purpose it is not even particularly important to operate with very accurate input
data. The principal parameters can be determined even when comparatively poor avail-
able data are used. Attention can subsequently be focused in these in order to improve
the accuracy of the analysis.

Another advantage is obtained in connection with the harmonization of codes of
practice. Both at national and international level this is simplified by the consistent and
rational approach adopted.

Applications of reliability analysis have hitherto been confined more partlcularly to
problems in which time plays only a subordinate part. The use of this technique is,
however, now increasingly advocated for dealing also with durability and service life
problems [2].

2 Reliability analysis of building structures
2.1 Elements of reliability analysis

The risk and reliability analysis of structures centres upon three key words: hazard,
mechanism and effect.

Hazards may be classified into those which are of a mechanical, a physical, a chemical
or a biological nature, as exemplified respectively by forces, temperature, acids, fungi,
etc. The mechanisms indicate how the structure responds to the hazards. By effect is
understood the loss of function that ensues or the emergence of a fresh hazard.

The first step in carrying out the reliability analysis consists in listing the hazards and
mechanisms. This is usually done in the form of a “Failure Mode and Effect Analysis”
(FMEA). For this purpose the hazards, mechanisms and effects are systematically
assembled in a table, as exemplified in principle in Table 1. Possible counter-measures
may also be included.

After the particulars have thus been listed, the first (fairly rough) quantification is
applied: which hazards are important enough to warrant further analysis and which are
not? So long as a particular hazard is of infrequent occurrence, or a structural member is
rather insentitive to it, or the effects associated with that hazard are minor ones, no

Table 1. Example of a Failure Mode and Effect Analysis (FMEA) with respect to the durability

of concrete
hazard mechanism effect
1 alternating load fatigue cracking, failure
2 flowing water erosion surface deterioration
3 frost expansion cracking
4 carbon dioxide carbonation corrosion of reinforcement
5 chloride depassivation pitting corrosion




further analysis need to be carried out. The hazard under consideration may also be
accepted if alternative construction methods or protective measures are uneconomical.
Mechanisms of greater complexity, in which several hazards play a part and/or the
effect of a mechanism in turn constitutes a hazard for another, can be represented with
the aid of fault trees and event trees (Fig. 1).

The next step will in general have to consist in applying a selection in the multiplicity
of hazards, circumstances and mechanisms. The basis for this quantitative selection is
sought in the magnitude of the probability of failure and the extent of the damage. The
combination of probability and damage, expressed as the mathematical product of the
two, is called the risk.

The final step in the reliability analysis is: quantification. This will involve assigning
values to entities, indicating scatters, designating probabilities and performing calcula-
tions. In the following treatment of the subject this quantitative part of the analysis will
be considered in greater detail.

failure of
reinforcemen

ﬁ%@ﬁ

decrease in mechanical no corrosion
cross-section stress
corrosion of chloride il
reinforcement] no failure
corrosion of decrease in
m reinforcementf |cross-section| |
failure of
reinforcement]
chloride carbonation

Fig. 1. Fault tree (a) and event tree (b) relating to the corrosion mechanism.

2.2 Calculation of failure probability

In connection with reliability analysis the failure of loadbearing structures has so far
more particularly been in the focus of attention. The aim is to have a low probability of
failure. In such cases the planned end of the service life is linked to the point of time
when the failure probability becomes unacceptably high. The actual failure of the struc-
ture will in general occur a good deal later in time than this, so that the service life aspect
is usually of secondary importance.

With reference to functional requirements and aesthetic aspects the planned service
life will be much more closely linked with the moment in time when the structure, in its
original form, ceases to exist. By means of maintenance, replacement, renovation and
other such measures an extension period can be added to the service life. The durability
aspect is therefore emphatically associated with this.



In reliability analysis within the context of durability the theory of probability, on the
one hand, and materials technology, on the other, play a special part. This is so because
reliability analysis starts from the description of the failure of a structure, i.e., the
description of a constitutional change. Knowledge of the time-dependent behaviour of
the relevant materials under the influence of the external circumstances and the un-
certainties therein plays an important part in connection with this. For building struc-
tures this knowledge must relate to: _

- mechanical processes such a failure, deformation, wear, erosion and weathering;

- physical processes such as temperature and moisture variations (causing deforma-
tion), absorption and emission;

- chemical processes such as corrosion and attack;

- biological processes such as fungal growth and rotting.

On the basis of this it is, for the relevant hazards to which structures are exposed, essen-

tial to gain insight into the service life distribution and thus into the probability of

failure within the lifetime envisaged.

In practice there are three different methods of determining the probability of failure:
- on the basis of experience (statistical data) the failure probability or the service life
distribution is known: this situation is encountered, for example, in the case of fire
and window-pane breakage;
- on the basis of a probabilistic calculation of the distribution of the service life #;
- on the basis of a probabilistic calculation of the failure probability with the aid of a
reliability function.
If the failure probability is determined on the basis of statistical information, it is not
absolutely necessary to have exact data at one’s disposal. Quite often it will suffice to
make a reasonable estimate of the mean value and the standard deviation of the service
life. The desired accuracy will of course depend on the contribution of the risk to the
overall cost.
In many cases it is possible to express the service life 7. explicitly in a number of
stochastic quantities X;:

I =f(X1,X2,...Xn) (D

The mean (1) and the standard deviation o (#.) can be calculated with the aid of the
known probabilistic methods such as the “mean value” approximation and the
“advanced” approximation [1]. The form of the distribution is not calculated in this way.
Quite often, for determining the type of distribution it will suffice to make a reasonable
assumption, e.g., a log-normal distribution (this means that log 7 is normally
distributed).

The direct calculation of the failure probability ties up most directly with the probab-
ilistic approach to safety. The simplest mathematical model for describing the event
“failure” comprises a load parameter S and a resistance (loadbearing capacity) param-
eter R.

If R and S are independent of time, then failure is expressed by:



{F} = {failure} = {R< S}

The failure probability P{F} then follows [1] from the convolution integral:

©

PIE) = [ Fa(s)-fs(s) ds
where:

Fr(s) = cumulative distribution of R
fs(s) = probability density function of S

2

3)

In many cases the exact mathematical determination of P{F} is too time-consuming, so
that in such cases approximation methods such as the mentioned “mean value” and the

“advanced” approximation are also applied.

In durability problems, R and/or S are time-dependent (see Fig. 2). Failure occurs if

%* failure

— gt
Fig. 2. R and S both time-dependent.

for at least one value of the time 7 in the period (0 — ) under consideration the resis-

tance R(7) is less than the load S(7) at that instant:

Pffailure in (0 — )} = P{R(t) < S(z) for at least one 7 in (0,¢)}

“4)

Since the event {failure in (0 — )} is identical with the event {r <1}, equation (4)
describes the distribution function F, (¢) (see Fig. 3) for the service life 7. By differen-
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Fig. 3. Distribution of ¢;.



tiating this function once with respect to ¢ we obtain the probability density function
fi,(t), which is represented in Fig. 4.

—>ftL(t)

frilp-—~f=————= p ‘er}

0 j (jsl)year
_— et
Fig. 4. Probability density of #;.

3 Economic considerations
3.1 General

Building a structure general involves considerable capital expenditure. The interest
and writing-off for depreciation associated with this, as well as insurance, are assignable
to the fixed operating costs. These moreover comprise:

- maintenance expenses, e.g., in respect of cleaning and technical maintenance
(including repair and replacement);

energy expenses;

administration expenses;

specific running expenses, e.g., caretaker staff and security.

These costs are largely determined by the design and manner of construction of the
structure. Therefore they should be duly taken into account already in the decision-
making stage relating to design and construction. If correctly applied, higher invest-
ment expenditure can result in longer service life and a reduction of maintenance, so
that the overall operating costs can be reduced.

As the depreciation period for a building structure can in general be very long
(average order of magnitude: fifty years), the average annual amount to be written off is
relatively low.

In estimating the service life a number of rather complex problems are encountered - in

addition to the fact that the service life is a stochastic quantity - because:

- the various parts of a building may have different service lives; if a particular part or
member performs several functions, each function may be associated with a service
life peculiar to that function,;

- the various members exhibit interactions; replacement of members sometimes
necessarily involves replacement of other members if they are not sufficiently
demountable;



- building codes and regulations cater only in part for the functional requirements of
building structures; besides, to indicate in the design stage for how long it will be
possible to satisfy these requirements is a complex problem,;

- the maintenance, the workmanship (quality of execution) and the care bestowed on
detailing (in elaborating the design) also play a part in determining the service life;
these factors are, however, difficult to assess in the design stage.

In present-day building practice little, if any, account is taken of the fact that service life
is linked to probability. Furthermore, there are hardly any quantitative (numerical)
records relating to service life. For example, even for a notably durable material like
concrete the technical literature dealing with durability [3] gives no figures at all for its
service life. And if information concerning service life is indeed available, it is often not
clear what probability is associated with the life stated.

3.2 Principles of cost analysis

The cost analysis for a building may be based on annual cost or on capitalized cost. In
the former case the investment cost of the building is translated into an annual amount
comprising interest and redemption. In the latter case, i.e., involving capitalization of
cost, every future expenditure is converted back to an amount which can be added to
the direct investment. In principle, both approaches lead to the same conclusions.

In particular cases the termination of the service life of a part, member or component
of a structure is determined solely by its ability to perform its function: as soon as it fails
to satisfy the functional requirements (and assuming that repair is too expensive), it is
replaced (window-pane, electric bulb, motor). External factors may also determine the
service life, however. For example, an offshore drilling platform need not have a service
life of more than 30 years because the oil well in question will be exhausted by the end
of that period. All that is required of the structure and its members is that they will not
give rise to problems within this service life. A similar approach may be adopted with
regard to housing or industrial building construction, basing oneself on an intended
service life of, say, 50 years. If a member of the structure fails in one way or another
within that period, it means that damage will have occurred, necessitating replacement
Or repair.

In the present section concerning capitalized cost only the case of the intended
“target” service life will be considered. For cases where a free service life or a service life
of indefinite duration is envisaged the reader is referred to Appendix A. For many
purposes it will suffice to conceive the anticipated capitalized cost as being composed of
three terms: the direct investment (initial expenditure), the cost of maintenance and
the risk (anticipated loss, being the cost to be incurred in remedying deterioration or
damage). Both the maintenance cost and the loss due to deterioration or damage
should be calculated for each year of the planned service life and then be capitalized
and added:



sy s PlR)-D,
E{Ccap}=S+z J {J} J

J=1(1+rl)j+j;1 (1+r')j (%)

where:

E{Ceap} = expectation of the capitalized cost Ceap

S = direct investment

V = maintenance cost and administration expenses for year j
P{FE} =probability of failure in year j

D; =loss due to failure in year j

r =real rate of interest (nominal rate minus inflation)

tg =target service life (in years)

The probability of failure P{F} in year j follows from the probability distribution (see
Figs. 3 or 4) for the service life ¢ (in years)

Py =P{j—-1)<u<jl=F ())- k(-1 ©®)
Alternatively we can start from the probability density function f;, (¢) as follows:

P{E}=[fi i} =ful(G—1I] -1 year (7

P{E}=fi,(1) - At @®)
where

t =j years

At=1 year

The real interest rate, i.e., the nominal interest rate corrected for inflation, is adopted in
equation (5). In determining D; and ¥ it is therefore not necessary to take account of a
rise in costs due to inflation. The term (1 + ') indicates that the value ¥ and Dj in year j
correspond to ¥j/(1+') and Dj/(1+r') in the initial year.

Exemple

Suppose that the annual cost of maintenance ¥ is 1.2% of the direct investment S, that
the probability of loss (due to damage or deterioration) is 10 ~* for each year and that the
loss Dj is equal to 2S. Such a constant probability of loss occurs in the case of fire, for
example. For working out the calculation the sum of the following geometric progres-
sion is used:

£yt

For the present example:
tg l

N e e

E{Conp} =S+ r 1+7 r 147

!
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With ' =0.02 and g = 50 this expression yields:
E{Ceap} =S+0.385+0.06S=1.44S

It thus appears that, in this example, maintenance and risk amount for 44% of the direct
investment.

3.3 Cost calculation on annual basis

First the case will be considered where there is only direct investment and where every
year a certain constant value X (annuity) is paid throughout the entire service life of ¢
years. The amount X paid in year j corresponds to a direct redemption equal to
X](1 +r').. Since the total redemption must be equal to S, it is thus possible to calculate
X from:

g 1 X 1
S=j; (1+r')i=7[1“(1+r')‘cl (10)
or:
e (L+r)a
X=S.r [——(Hr,)m_l} (11)

Example: If r'=0.02 and the intended service life /g =150, then it follows that
X=0.0318S (if no interest were payable, then X=S/50 =0.02S5).

If ¥ in equation (10) denotes the nominal interest, this represents a normal annuity
(i.e., nominally the same amount every year). However, for the purpose of the present
report it is preferable to work with the real interest because then the annual increase of
an amount keeps pace with the price level.

The cost of maintenance and risk can, if they are the same for each year, be directly
added to X. But if these costs are not constant, they must be capitalized and added to S,
after which the value of X can be determined with the aid of equation (11). For the
optimization problems considered in this report the capitalized cost is therefore oftena
more suitable criterion.

In the foregoing, the real interest has always been introduced and cost increases due
to inflation have been left out of account. The drawback of this procedure is that the cal-
culated amounts of money do not directly correspond to the amounts actually payable.

3.4 Examples

By way of illustration some optimization problems will be dealt with in this section. The

following will successively be considered:

a. a simple carbonation problem in which, for a given service life, the optimum depth
of concrete cover is determined;

b. a problem in which the service life of a wearing course is optimized;

c. analytical treatment of b;

11



d. similar to problem b, but taking account of the stochastic character of the service
life; ‘
e. a system with two elements liable to fail.

3.4.1 Carbonation of concrete

Carbonation refers to the binding of the free lime in concrete by carbon dioxide from
the atmosphere, as a result of which the pH of the concrete is lowered. If the concrete
thus ceases to have sufficient alkalinity, its protective effect is lost and the reinforcing
steel may corrode, which can be regarded as constituting the end of the service life.

" In Chapter 4 the following approximation for the progress of carbonation is given:

d*>=a-t (12)
where

d=the depth of carbonation
a=a constant
t =the exposure time

The service life ¢ is attained when the carbonation depth d becomes equal to the depth
of concrete cover c:

tL=c’la (13)

For a = 10 mm?/year the service life #;_ of the concrete is given as a function of cin Fig. 5.
It appears from this diagram that 24 mm cover corresponds to a service life of 60 years.
Conversely, to obtain a service life of 60 years it will be necessary to provide 24 mm
cover. Ifthe cost of the cover is £0.40 per m?>/mm (which is a reasonable figure for, say, a
gallery slab), the required cover will cost:

Ceap =24 x0.4 =£9.60 per m’

It is, however, not very realistic to conceive the service life as a deterministic quantity,
for the carbonation does not proceed everywhere at the same rate, and the depth of
cover itself will never exactly conform to the nominal value indicated on the drawing.

~
(=]
T

1 | 1 1 1

10 20 30 40 50 60

— » cover c (mm)

o

—— service life t, (years)

Fig. 5. Service life 1 as a function of the depth of cover c.
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Assuming that Fig. 5 represents the mean service life and that the actual values display
a scatter in relation to this with a coefficient of variation of 33%, we obtain Fig. 6.

30~ I “L)
— %-l
3
£ ?
o Thn3_
@
>
o
© 10
T 1 L 1 1 L .
0 10 20 30 40 50 60

—— service life t; (years)

Fig. 6. Service life of the cover as a stochastic quantity.

Now, for a given depth of concrete cover, it is possible to calculate with what prob-
ability the entire cover will become carbonated within a certain period. The total
capitalized cost is then, according to equation (5):

g V & P{F}- D

E{Cep) =S+ Ly L 5

(Canl =5+ 2 5% L (Tary ®)

With S=0.4¢, ¥,=0, D; = D and an intended service life tG = 60 years this reduces to:

60
P{F}
E Cca =04 D' - 14
{ P} e* jgl (l+r1)J ( )

Because P{Fj} is not constant, the summation is difficult to carry out. Therefore the
following approximation can suitably be adopted for equation (14):

D 60
E{Ceap) =0'4C+2Tr')6°j; P{F} (15)
What this approximation comes down to is that, technically from the financing point of
view, in each of the 60 years failure is considered to occur in the 60th year. The financial
loss is thereby somewhat underestimated.

The sum of the probabilities P{Fj} for the years 1 to 60 is equal to the probability that
the service life is less than 60 years, so that:

D
E{Ccap}=0.4(3+m-1){ll,<60} (16)

If a normal distribution is adopted for ¢, the probability that ¢ is less than 60 years can
be determined from:

P{t1. <60} = On(—B) (17)

13



where:

p (1) — 60
b ="

@y = standard normal distribution (u =0 and g =1)

For example, putting c =24 mm (as found earlier on), we obtain x () = 60 years, so that
B = 0. The probability of failure is then 50%. For loss amounting to f 50.-/m? and a real
interest rate ' =0.02 it follows that:

50
EKhﬂ=960+T6¥5050=960+760=fw20pmnf

If a 30 mm depth of concrete cover is chosen, the following results are obtained:

o (1) =0.33-90 =30 years

u(1)—60 90— 60
b=y 30 -

P{t. <60 years} = &x(—1)=0.16  (see [20])

1

EK@Q=0430+T%@OJ6=U+2A=fMAOmrm2
Increasing the coverresults in an increase in direct cost and a reduction of the risk, while
the total cost expectation decreases. The optimum cover can be found by repeating this
calculation for a number of values of ¢, as indicated in Fig. 7. The optimum is obtained
for ¢=32 mm, the failure probability then being 10%, in the present example.

This example will be further considered in Chapter 5, where a more detailed reliabil-
ity analysis will be given. It will also be investigated whether protective painting may
offer a more economical alternative to increasing the concrete cover.

t . total cost
20
—~ [te30 N
g capitalized — T
o 10k risk |
A d | |
w
L |
i investment- :
L L L 132mm . L
0 10 20 30 40 50

—— concrete cover ¢ (mm)

Fig. 7. Optimization of the depth of cover with respect to carbonation.

14



342 A wear problem

The problem for analysis relates to a flooring tile provided with a wearing course of
thickness dy (Fig. 8). The tile will have to be replaced by a new one as soon as the wear-
ing course has worn away.

1%

Fig. 8. Tile with wearing course of thickness d,,.

The problem consists in so determining this thickness d, that the total cost is a mini-
mum. For a small value of d the cost of manufacture is low, but early replacement of the
tile will be necessary. For a greater thickness d the tile will cost more to manufacture,
but it will have a longer service life.

The reliability function for this case is:

Z=dy—v-t (18)
where

do = the design thickness
v =the rate of wear
t =the time

The service life ¢ of the tile is reached when Z=0:
L= do/v (19)

Suppose that the cost of manufacturing a tile can be split up into a fixed portion and
portion that increases linearly with dy (see als Fig. 9):

S=A+B-dy (20)

e

—— design thickness dg

>

— = cost of manufacture S

Fig. 9. Cost of manufacture as a function of d,.

To begin with, the the rate of wear v is assumed to be deterministic. With 7. = do/v and
S= A+ B-dy we obtain the following expression for the cost X on an annual basis:

15



1

(L+7)c
(L+r)c-1

Note: This problem, in which the service life is determined by the structure itself, can
alternatively be solved by capitalizing the cost. The formula for C.,, differs only by a
factor r' from X (see Appendix A).

In Fig. 10 the mean annual cost X has been plotted as a function of the design param-
eter dy. The solid curve is based on:

X:Sr’[ }:(A+B-do).r'. 1+ 1)

A=1.0 cost unit (cu)

B=0.1 cu/mm

v =0.5 mm/year

r'=0.02/year (real interest rate)

The minimum for X is obtained when dy = 19.5 mm and is equal to 0.11 cost unit per
year. The optimum service life is then ¢t = do/v =19.5/0.5 = 39 years. For this case the
curve in Fig. 10 slopes only so slightly that there is little objection to choosing a some-

0.6 _
-
-

—

.95 -
04§\ 202%™ =7 g 05 cu/mm
-

— = average annual cost x

0.2y do=19,5mm B=0,1 cu/mm
: S
e e
" L L L R N PR " N N N
0 10 20 30 40 50 60

——= design thickness dg

Fig. 10. Average annual cost x as a function of the design thickness d, for the case: 4= 1.0 cu,
B=variable, v=0.5 mm/year and r’' = 0.02.

what larger or smaller design thickness dy (or a longer or shorter service life). For
example, if dy = 10 mm is adopted, the service life will be # = 10/0.5 =20 years, and the
mean annual cost will be X=0.12 cu/year, which is only a little above the optimum.

If the variable cost B is very low in relation to the fixed cost 4, e.g., B=0.01 cu/mm,
the optimum design thickness can be expected to increase. In that case (as appears from
Fig. 10): dy =50 mm and #_ = 100 years.

If the variable cost B is high in relation to the fixed cost 4, the importance of a
“sharply selective” choice of the design thickness becomes greater. In Fig. 10 this is
illustrated for B=0.5 cu/mm. The optimum design thickness is then dy=9.5 mm,
while the service life is f, =19 years and the mean annual cost X=0.37 cu/year.

343 Analytical treatment

The equation (21) for the mean annual cost contains the term (1 + 7’ )dO/ ¥, For small
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values of ' we may write as an approximation:
1+ r’)IL =e"lL

Then equation (21) becomes:

1
X:(A+B-z.v)-r’-{1+e73—1] (22)

The optimum service life is attained when dX/dr=0:

dx , 1 rle
E;:B-wr [1+m}—(A+B'l-V)-"(“Tl_-1—)2=O
or:
B.v(er’-t_1)er'-!=(A+B't.v).r/er’vt
B-v(e" ' —1)=(A+B-1-v)-r
Expansion in a series gives:
el =147 43 1) .
whence we obtain:
B-v[r’-t+5'(r’-t)2]=(A+B-tL-v)-r’
By 1) =A.r
so that:
24
=BV @3

For A=1.0 cu, B=0.1 cu/mm, v=0.5 mm/year and ' =0.02 (as in the previous
example) we obtain from equation (23):

2-1.0
L= m=1/200 =45 years

In example b the optimum was found to be 39 years. For practical purposes the dif-
ference between the two results is negligible. Closer agreement will be obtained for
smaller values of the product r' - #1.. Thus, in the case where the variable cost is high, e.g.,
B=0.5 cu/mm, equation (33) gives:

U 2-1.0
L= m=1}400 =20 years

This is in good agreement with the 19 years obtained earlier.
If the cost structure and the rate of wear are known, the optimum service life of the
optimum design thickness can be calculated from equation (23).
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3.4.4 Rate of wear as a stochastic quantity

In the foregoing treatment of the problem the rate of wear was assumed to be deter-
ministic. Now what are the consequences if the rate is not accurately known because
both the wear resistance and the load are stochastic? Suppose that the rate of wear is the
same for every tile within one and the same consignment of tiles. This means that un-
certainties with regard to average wear resistance and average load level will pre-
dominate in relation to change differences between individual tiles.

In those cases where the end of the service life is governed by a mechanism of cum-
ulative damage the Weibull distribution is often applied. The distribution function and
density function of the Weibull distribution for the stochastic service life ¢ are then:

F() =1 e 4)
ful)y== (r/u)““ - (e (25)

Fig. 11 represents the density function for several values of k. The mean and the
standard deviation of the Weibull distribution are obtained from:

u () =ul (1 +1/k) (26)
p2(n) + o2 (t) = ul (1 +2/k) Q7)

where I" () is the gamma function for which I (z+ 1) = z! if zis an integer. As a rough
approximation we may adopt:

O'(ZL) 1
)= and V=—7—=<=7 2
u(i)=u L)~k (28)
2,0 [ k=6 (V=02)
1.0 * k=2 (v=05)
i k=1(V=10)
0 20 250

—_— t

Fig. 11. Weibull distribution for various values of k.

Since the service life is stochastic, the average annual cost is also stochastic. Only when
the service life has ended it is possible to calculate what the actual cost per year has
been. The annual cost itself therefore cannot be optimized, but the expectation value
E{X} of that cost can:

Z X()- (29)

j=1
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If the probability of failure (end of service life) is equal to { for 9, 10 and 11 years, then
E{X} should be determined from:

E{X}=:{X(9) + X(10) + X(11)}

With the aid of equation (7) we can write equation (29) as:

E{X}= ‘Zl X(j)-fi - At (30)
&

where t=j years and Az=1 year.
Obviously, if there is a continuous distribution for the service life, equation (30) must
be replaced by:

[e<}

EfX) = [ X(0) A (0)-ar 31)

For numerical evaluation the integral will of course have to discretized, so that we revert
to equation (30).

The above presentation has been kept very succinct in order not to weary the reader
with detailed mathematical derivations. Suffice it merely to give the result correspond-
ing to:

A =1 cost unit (cu)
B =0.1 cu/mm

r =0.02

d =0.5 mm/year
V(t)=0.33

It now follows that E{X} attains a minimum for dy =25 mm instead of the previously
determined value of 39 mm. The cost will then amount to 0.14 cu/year (instead of 0.11
cu/year). The behaviour of £ {X } as a function of dy is entirely comparable to Fig. 10 for
the deterministic case.

345 A system with two members liable to fail

Consider a system comprising two members and suppose that the whole system must
be replaced as soon as one of the members fails. Hence we here have a serial system.
The direct investment for the system is expressed by:

S=(Ai+B1-d\) + (4 + B, - ) (32)

where d; and d, are design parameters of the members 1 and 2. (In this context it is not
necessary to conceive these solely in terms of the thickness of wearing courses). The
service lives of the members are expressed by:

t1=d1/V1 and t2=d2/V2 (33)

The mean annual cost can thus be written as:
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X=(A1+A2+Bl-d1+Bz-d2)~rl~ll+ﬁc—l’ (34)
where L =min (¢, ).

So long as the service lives of the members can be accurately calculated, i.e., when a
deterministic approach is adopted, the problem is simple to solve. In that case there isin
fact no advantage in trying to obtain a longer service life for one member as compared
with the other. Therefore it is appropriate to adopt ¢, = t; = 1, so that equation (34) can
be written as:

1 +——1—- (35)

X=(4,+A4,+B-v,-t Vy-dd)) -1
(Ai+Ar+Br-vi-ti+By-vy-dy)-r (1+r’)‘L—1

Then, in a manner similar to that in Section 3.4.3, the optimum service life is obtained:

2(A1+Bz)
Z=V(B|'V1+BQ-V2)-I" (36)

If scatter has to be taken into account in the determination of the service life, the prob-

lem becomes more interesting. It is a well known design principle that, if one member is

relatively expensive and the other relatively cheap, it must be ensured that replacement

will not be governed by the cheaper member. This principle can be suitable demon-

strated with the aid of the model developed here and be further quantified.
Starting from equation (31), the following would have to be minimized:

E{X} = O(j? X(t)-fi (r)-dt (37)

In determining the density function for 7. it must be taken into account that # is the
minimum of two service lives L, and L,. Suppose that L; and L, conform to a Weibull
distribution. Then the density function of 7 has still to be determined. For this purpose
the complement of the distribution function is first calculated, i.e., the probability that
t1 is greater than a value t. The service life 7, can exceed a value ronly if both L > tand
L, >t Assuming L, and L, to be independent, we have:

P{ty<t}-P{Ly>t and Ly>t}=P{L>1t}-P{Ly>1} (38)

On the basis of the definition of a distribution function it then follows that:

L= F (1) ={1=F,O}{1 - Fi,(1)} 39)
or:

F (1) =F. (t) + FL,(t) = FL,(r) - FL,(1) (40)
The density function is obtained by once differentiating equation (40):

S (6) =S, (0) + () = (L, (1) Sia(0) + B () -/, (1) (41)

Substitution of this expression into (31) gives:

20



e

E{X}= g X(@0) A1 = A, 0] fi,(0) + [1 = A,()] (1)} de 42)

Evaluation of equation (42) is almost impracticable except with the aid of a computer.
The results for a particular example are presented in Fig. 12. The data for this example
were:

A1+ A =1cu

B, =0.1 cu/mm
B, =0.01 cu/mm
r =0.02 per year
V=1V, =1 mm/year

V() = V(1) =033

minimum + 10%

minimum

50 jri- — o

minimum + 20%

service life L,

|
- |
|
L 1 | 1 1
0 30jr
— = service life L,

Fig. 12. Optimum service life of two members of a serial system.

The difference between the members therefore that for member 1 the variable cost per
unit of additional service life is 10 times as high as for member 2.
With the deterministic approach the optimum service life would be expressed by:

fo= 2(A1+A2) _ 2 30
L= (Bl'd1+Bz~d2)-r' = (0‘1+0'02).0'02— years

As appears from Fig. 12, the optimum design service life for member 1 is indeed 30
years, but it is advisable to adopt a design service life of 50 years for member 2.

The cost associated with L; = L, = 30 years is approximately 10% higher. Of course,
greater differences than this may occur when different ratios of B; and B, are con-
sidered.

4 Failure mechanisms for reinforced concrete
4.1 General

In order to make quantified statements as to the service life of a material, a member or a
structure it is necessary to know the factors that affect the service life. Accordingly, this
chapter takes stock of hazards, mechanisms and effects relating to service life. Its
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purpose is illustrative and, because of the necessity to limit the scope of the investiga-
tion, it relates only to reinforced concrete.

If the hazards, mechanisms and effects are identified and known, it becomes possible
to estimate the service life by calculation. First, the safety and serviceability aspects will
be briefly considered, without explicitly paying attention to service life.

Next, the durability aspect will be examined, with reference to a summary of the
failure mechanisms described in the literature. Finally, at the end of this chapter, a table
of hazards, mechanisms and effects for reinforced concrete is presented in the form of a
Failure Mode and Effect Analysis (FMEA). It has been endeavoured to present a
summarizing, but nevertheless as complete as possible, review of the subject.

4.2 Limit states relating to safety and serviceability

Mechanical influences in the form of forces and, to a lesser extent, imposed deforma-
tions play an important part in connection with the design and dimensioning of rein-
forced concrete structures. The principal types of load to be taken into account are:
- the dead weight of the structure;

the live load on floors, stairs, landings, galleries, etc.;

the snow load;

the wind load.

The imposed deformations are in general associated with shrinkage of the concrete and
with changes in length due to temperature variations.

The concrete structure is considered to fail when the load to be taken into account
exceeds the ultimate load capacity of the structure. This relates to the limit state with
respect to failure. The structure also fails when the deflection or the crack width
becomes too great, this being taken to constitute the limit state with respect to service-
ability.

In these considerations the service life of the structure plays only a subordinate part.
The maximum value of the load which is taken into account is - as a rule: implicitly -
related to a particular reference period. A period of 50 years is often adopted for this.
This does not mean to say that the service life will then also be 50 years. It is only shown
that the probability of failure, excessive deflection or cracking is sufficiently low during
this period.

Check calculations for the crack width in reinforced concrete structures are
performed from aesthetic and durability considerations. At a crack the (aggressive)
environment has direct access to the reinforcement. This may give rise to corrosion, but
this possibility can be limited by imposing a limit upon the maximum crack width.

4.3 Durability aspects

Fatigue
When concrete, reinforcing steel or the bond zone is subjected to a large number of
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stress variation cycles, fatigue failure may occur in course of time [4], i.e., failure then
occurs at a level of stress which is considerably lower than the failure stress for static
loading (when the load is increased in a single operation up to failure).

Fatigue in concrete as well as in reinforcing steel is a process of gradually progressing
internal cracking. Via the number of stress cycles a direct relation with the service life is
established. In this respect fatigue is indeed a durability problem.

In general, Miner’s rule is adopted as the mathematical model for fatigue. This rule is
based on the service life N, being the number of cycles up to fatigue failure, for a stress
with a constant amplitude and a constant average value. At the instant of failure due to n
non-constant stress cycles, it applies:

- 1
Ms= ) N

i=1

= Mnm (43)

In this formula Ms is the (hypothetical) damage caused by the stress cycles, while My is
the so-called Miner number, which constitutes a measure of the resistance that the
material offers to cyclic loading. The structure fails when Ms becomes equal to M.
Both Msand M\ are stochastic quantities, Ms being primarily related to the (stochastic)
loading and My to the (stochastic) strength of the material. There is a reasonable
measure of insight into both of them in relevant cases.

Erosion

Erosion is a process in which the surface of the concrete is worn away by mechanical
influences such as those due, among others, to sliding, scraping or knocking [3]. These
may occur in air or under water [5].

The following erosion mechanisms can be distinguished:

a. wear due to mechanical influences upon concrete surfaces exposed to the air;

b. wear due to mechanical influences caused by solid particles carried along by water;
c. cavitation.

There is no generally accepted model for the mechanisms a and c, and a clear concep-
tion of their stochastic character is lacking. For mechanism a it is, however, possible to
indicate service lives for certain properly identifiable conditions of service.

In [5] the following expression for the wear s is given as the model for mechanism b:

s=a-t+b-v.t (44)

where a is a measure of the proportion of solid particles performing a scouring or rolling
motion, brepresents the effect of the particles impinging on the concrete surface, vis the
velocity of the water and ¢is the time, while kis a constant which remains to be deter-
mined. It is not clear whether this model is applicable also to non-laboratory conditions
(or to large values of 7).

Damage due to frost and de-icing salts
The mechanism explaining the damage caused to concrete by frost and di-icing salts
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does not appear to have been fully elucidated [3]. A number of explanations have been
put forward, the most familiar of which is based on the 9% volume increase that water
undergoes on freezing.

Another possible explanation is the ice lens mechanism. From considerations of
thermodynamics it can be shown that equilibrium can exist between large and small ice
crystals only if the pressure on the larger crystals is higher than on the smaller ones. This
means that water in narrow pores will not freeze until sufficient build-up of pressure is
possible.

A third explanation for the damage due to frost is provided by the phenomenon of
contraction associated with a lowering of temperature, resulting in detachment of the
pore walls. In consequence of diffusion and sublimation (direct conversion from ice to
water vapour), water can freeze in the voids thus formed until they are completely filled.
When the temperature subsequently rises, the ice expands and causes fracturing of the
concrete.

If de-icing salts are present, they are found often to create conditions in which
damage occurs more rapidly [6]. Osmosis and the absorption of water of hydration are
also mentioned as possible causes of damage to concrete exposed to frost action.

The degree of saturation, the rate of freezing, the type of cement used, the use of de-
icing salts - all these are factors which govern the degree and type of attack.

Chemical attack

In connection with the chemical attack of reinforced concrete [3] the following broad

distinctions can be drawn:

a. attack of concrete due to the dissolving of certain material constituents (leaching) or
to the expansion of certain constituents;

b. corrosive attack of the reinforcement.

Corrosion of the reinforcement is generally associated with the loss of the protective
action that the surrounding concrete should provide for the steel. This will not necessar-
ily be accompanied by the loss of other functions of the concrete (e.g., its strength, rigid-
ity and fire protecting capacity).

a. Attack of concrete

Attack occurring in the form of dissolving or expansion usually affects the hardened

cement paste. With some kinds of aggregate these actions may, in principle, alsoinvolve

the aggregate particles. It would be outside the scope of this report to attempt a com-
plete survey of all possible types of chemical attack. A brief outline must suffice:

- inorganic acids: the aggressiveness depends on the concentration of the acid, the
temperature, and the nature of the reaction products (soluble or insoluble and expan-
sive: gypsum, ettringite); acid-forming gases must also be mentioned in this context:
carbon dioxide, sulphur dioxide, sulphur trioxide and nitric oxide;

- weak organic acids such as lactic acid, acetic acid, formic acid and tannic acid; some
acids, such as oxalic acid, tartaric acid and humic acids sometimes react with calcium
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hydroxide to give a poorly soluble product, so that further attack is arrested;

- other substances which form salts with calcium hydroxide, such as sugar, phenol and
glycerine; v

- organic and inorganic salts, including more particularly sulphates and chlorides,
which often cause problems (those due to chlorides mostly consist in attack of the
reinforcement and not of the concrete itself, however);

- soft water which dissolves calcium hydroxide; the aggressiveness may be increased
when carbon dioxide or sulphur dioxide is dissolved in the water, or the hardness is
lower or the flow velocity of the water is higher;

- alkaline substances may react with the aggregate, resulting in the formation of
expansive products; in this respect alkali-silicate and alkali-carbonate reactions
(jointly referred to as alkali-aggregate reaction) may play a part; with high alkalinity,
hydrates of calcium aluminate (C;A) may dissolve, and even the reinforcing steel
may be attacked by dissolution.

b. Corrosion of reinforcement

Under normal conditions, a so-called passivation layer is formed on the surface of rein-
forcing bars. It is a thin but very dense layer of hydroxide which prevents further
corrosion. This film may, however, be attacked by the surrounding concrete environ-
ment, so that electrical potential differences may develop along the bars. Electro-
chemical corrosion will then take place. The corrosion products take up a considerably
larger volume than the original iron, which may result in fracturing of the concrete by
expansive pressure (spalling).

In practice, attack of the passivation layer occurs chiefly in two different ways:

- carbonation of the concrete surrounding the reinforcement;

- presence of chloride.

Carbonation is said to occur when the calcium hydroxide in the concrete reacts with
carbon dioxide from the atmosphere, as follows:

Ca(OH), + CO; o CaCO; +H,0 (45)

Asaresult, the alkalinity of the concrete is lowered and the passivation can no longer be
preserved, so that corrosion of the reinforcement is then possible. Carbonation is a dif-
fusion process. The depth of carbonation d can therefore be expressed as a function of
time:

d’=a-t (46)

In this formula the constant a is dependent on, among other factors:
- the permeability of the concrete, which is bound up with:

o the water-cement ratio

o the cement content

e the type of cement

o the particle size of the aggregate
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o the curing of the concrete
e the humidity
- the content of carbon dioxide in the air.

In a literature study by De Sitter [7] the constant a in equation (46) is expressed by the
formula:

_ 46w —17.6
a=""7

where w is the water-cement ratio (< 0.6), R is the influence of the cement and X is the
influence of the climatic conditions.
The following approximate values are stated:

R-K 47)

R=1.0 for portland cement class A

R=0.6 for portland cement class B

R=1.4 for portland blastfurnace cement with 30-40% slag

R=2.2 for portland blastfurnace cement with 60% slag
(the usual proportion for Dutch cements)

K=10.3 for wet concrete

K=0.5 under average outdoor conditions

K=0.7 under protected outdoor conditions

K=1.0 under indoor conditions

The formula (47) yields an average value. The maximum depth of carbonation is in
general 5 to 10 mm greater (Fig. 13). It must moreover be borne in mind that the
permeability of concrete decreases as a result of, among other factors, the advanced
hardening that occurs in course of time. The carbonation process will then proceed at a
slower rate than that corresponding to formula (47). Because of inhomogeneities in the
concrete (large pores, cracks) the permeability may locally be higher, however.

. not carbonated

| @ ® |

_____ - _ ____._.| average

i W 7, carbonated
1

15mm 8mm

Fig. 13. Irregular carbonation front in concrete.

For existing structures it is therefore advisable to calculate the constant a by working
back from the measured actual depth(s) of cabonation and the known age of the con-
crete. With this procedure the uncertainties associated with the calculation of a can
substantially be eliminated.

After disruption of the passivation layer - whether by carbonation or by chloride
attack - corrosion of the reinforcing steel may occur, subject to the presence of water
and oxygen. The rate of corrosion will depend on the availability of these agents.

In an indoor environment there is generally not enough moisture in the concrete for
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the corrosion process to occur at a significantly high rate. Concrete in an outdoor
environment will, however, generally contain enough moisture for this to occur. But
under such conditions the actual period of corrosion leading to deterioration or damage
is relatively so short that it can be neglected in comparison with the duration of the
carbonation process or of the chloride penetration process.

The detrimental effects of corrosion are:

- reduction of steel cross-sectional areas, so that strength and rigidity are diminished;

- spalling of the concrete cover, because the corrosion products occupy a larger volume
than the original steel.

4.4  Overview

In general, concrete structures may justifiably be regarded as durable structures. Their
primary property is that they are able to support stochastic loads safely over a very long
period of time. With concrete of suitable composition and workmanship this property is
accompanied by high resistance to other influences such as cyclic load variations,
erosion, frost and chemical attack.

In the Netherlands, deteriorative damage to concrete structures is generally associa-
ted with corrosion of the reinforcement. The cause must often be sought in the use of a
hardening accelerator, perfunctory workmanship resulting in porous concrete, or in-
adequate depth of concrete cover. Particular circumstances such as the presence of de-
icing salts or marine salts may give rise to corrosion.

To provide a good insight into the phenomena relating to the durability of concrete
structures, Table 2 has been compiled from the information presented in the foregoing.

Table 2. FMEA for the durability of reinforced concrete

hazard mechanism effect
1 alternating load fatigue cracking, failure
2 flowing water erosion surface deterioration
3 turbulent water cavitation formation of cavities
4 walking, vehicles wear unserviceability
5 frost expansion cracking
6 de-icing salts heat extraction scaling
7 frost/de-icing salts heat extraction scaling
8 acids neutralization corrosion
9 acid-forming gases neutralization corrosion
9a carbon dioxide carbonation corrosion
10 sugar, glycerine formation of acids corrosion
11 micro-organisms production of acids corrosion
12 soft water neutralization corrosion
13 chloride, etc. depassivation pitting corrosion
14 sulphate crystallization disintegration
15 corrosion rusting cracking of concrete
16 corrsion reduction of bar dia. deformation/failure

17 contamination of aggregate
18 alkaline aggregate

crystallization
alkali-silica reaction

explosive spalling (pop-outs)

expansion




It lists the various hazards, mechanisms and effects thereof in the form of a Failure
Mode and Effect Analysis (FMEA).

5 Case study: durability of a gallery slab
5.1 Introduction

As a demonstration of an optimization analysis relating to durability a reinforced
concrete outdoor gallery slab will be investigated (see Fig. 14). In order to keep the

: B

[P

Fig. 14. Data for gallery slab.

problem within conveniently manageable limits, only the hazard due to carbon dioxide
will be considered. The mechanism concerned is the carbonation of the free lime and
the effect is corrosion of the main reinforcement at the underside, manifesting itself in
spalling of the concrete cover (Fig. 15).

Four design alternatives are to be distinguished:

1. 15 mm cover, no coating;

2. 30 mm cover, no coating;

3. 15 mm cover, coating, maintenance every 20 years;

4. 15 mm cover, coating, maintenance every 10 years.

Fig. 15. Damage due to carbonation of a gallery slab.
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In principle both the cover and the maintenance period are of course continuous
variables. Actually a much greater number of alternatives would therefore have to be
investigated, in the same way as in Section 3.4, example a, where a similar but more
highly schematized problem was dealt with. However, for a preliminary examination of
the problem an analysis of the four above-mentioned alternatives will suffice.

As soon as the deteriorative damage visibly manifests itself, remedial action will have
to be taken. The following possibilities may be considered:
1. complete replacement;
2. removal of the entire carbonated zone and application of sprayed concrete;
3. local repair of the visible damage with polymer mortar.

Which of these methods will offer the optimum in any particular case will depend also
on the point of time when the repairs are effected: radical repair work is meaningful only
if the structure still has a sufficiently long unexpired service life to complete. The
planned service life for the building as a whole is 60 years.

5.2 Mathematical models for carbonation

If the concrete is not provided with a protective coating, the depth of carbonation (d in
mm) can be calculated with the aid of equations (46) and (47):

46w —17.6
(%2.7 )R Kt (48)

For the case under present consideration (and with reference to [8]) we have:
w=0.50 R=20 K=0.7

The depth of carbonation is not the same at every point of the slab, however. Formula
(48) gives the average depth over the slab (see Fig. 13).

The start of corrosion is governed, not by the average depth of carbonation, but by the
advanced peaks of the carbonation front. According to [7], this may make a difference of
5-10 mm. On the other hand, not every peak encounters a reinforcing bar, and it
moreover takes some time for the corrosion to manifest itself in an externally visible
manner (spalling of the concrete cover). For this the following formula is given in [12]:

0.08-d
h= D V.

(49)

where

¢ =the cover
@ =the bar diameter
v. = the rate of rusting

All in all, the time that elapses before corrosion damage becomes visibly manifest can
be calculated from the following formula (with replacement of x in equation (48) by
(d—A)):
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2 0.084
%] 'Vc

(d—a)
T R2.K

2.7
46w —17.6

n E (50)

The influence of fluctuation of the carbonation depth is taken into account by means of
A, for which an average value of about 5 mm may be adopted. The rusting rate v, is
affected by very considerable scatter. In the literature [9, 10] values ranging from 0.015
to 0.09 mm/year are found. E is a constant with a value of 0.08 mm. Its purpose is to
make equation (50) non-dimensional.

The question as to what is the appropriate model to be adopted for describing the
carbonation process in concrete is still a subject of much discussion in the literature. In
giving formula (50) it is not the intention of the present report to declare a position in
this discussion. The only purpose is to show that reliability analysis can be used for
solving durability problems. The formula in question has, in this context, been chosen
more or less arbitrarily. '

In the slab considered in this example the nominal cover is 15 mm. The actual cover
can be assumed to be somewhat greater: 20 mm, say. The reinforcement consists of
8 mm diameter bars (@ =8 mm) spaced at 150 mm centres. If the previously stated
values are adopted for w, C, K, E and tand if A and v, are taken as 5 mm and 0.04 mm/
year respectively, the following result is obtained for the service life:

(20 —5)? 2.7 ]2 0.08-20

n =29 +5 =134 years

T20%-07° |46-05—17.6] © 8.0.04

The main contribution comes from the first term, the so-called initiation time.
If, in accordance with the second design alternative, the cover is taken as nominally
30 mm (practically 35 mm), then:

tL=115+7 =122 years

In that case there is a marked increase in durability.

If the underside of the concrete slab is provided with a coating highly impermeable to
carbon dioxide (chloro-vinyl or epoxy paint), the length of time up to the start of attack
of the reinforcement can be considerably increased. In Appendix C it is shown, on the
basis of formulae in [7], that this increase is expressed by:

(d—A)s

AIL—‘—W (51)

where sis the thickness of the coating and f'is the fraction of the surface not covered by
the coating. By way of example an epoxy paint with s =0.18 mm and f=10~° is con-
sidered. Then:

(20—5)-0.18

AL ="180710-3

= 1500 years

The protective action of the coating is thus clearly demonstrated. This does presuppose,
however, that the values of sand f do not vary in course of time and also that the coating
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remains intact. This (ideal) situation can be approximately achieved if frequent inspec-
tion and maintenance are carried out.

As regards the thickness s of the coating, a rate of surface disintegration of 3 microns/
year is mentioned in [7] based on [11]. For a normal maintenance cycle of 8-12 years this
rate is virtually negligible: it would mean that the thickness of the coating decreases
from, say, 0.18 mm to 0.15 mm in 10 years. Only when longer intervals between main-
tenance operations are considered does this aspect begin to be important.

Of greater significance is the time-dependent behaviour of f, at least if phenomena
such as damage and scaling-off are considered to be taken into account by f. There are,
however, no data at present available for this. Meanwhile, pending further information
on the subject, the behaviour of f as a function of time will be assumed to be as repre-
sented in Fig. 16.

w(L)

5% confidence

\
1 1 Al
0 10 20 30 40 50 60

1 1 A

——» imperfection fraction f
3

— & time t (years)

Fig. 16. Assumed behaviour of the fraction f as a function of time ¢if no maintenance is carried
out.

On this assumption the logarithm of f decreases linearly with time and the coating
will have entirely disappeared after about 50 years. This is expressed by the formula:

f(t)y=fo-e ™ (52)

where f; is the value of f for r=0, while a =In f;/Tj in which Ty =50 years.
If maintenance is periodically carried out, f(¢) will show the familiar saw-tooth
behaviour as represented in Fig. 17.
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& 2 T=1Q years < 3 . T=20 years
L 10 [ —
T 10-‘ i 1 10-“ i
1 1 1 1 1 l 1 1 1 1 1 A
0 10 20 30 40 5 0 10 20 30 40 50
— t (years) —t (years)

Fig. 17. Behaviour of f as a function of time ¢ for maintenance every 10 and 20 years respectively
(saw-tooth model).
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For calculating the corresponding service life it will be presupposed that the contri-
bution made by the concrete itself is negligible in comparison with the extra time
gained by the coating. Since f(¢) is time-dependent, it is not possible to make direct use
of equation (52). Some differential calculus will have to be applied. During a very short
period dt the carbonation front will advance a very short distance dy. Then, in analogy
with equation (51), we have:

s-dy
4=180-1 (1)
or:
s-dy
f(t) -dl‘=m

Integration of both sides of the equation, from the commencement of carbonation
(t=0, y=0) to the time when it reaches the reinforcement (t= 11, y=d — A), yields:

t d—A

J7(0)-di= | g0 (53)

The right-hand integral is equal to s(d— A)/180. For the integral on the left it is
necessary to take account of the logarithmic saw-tooth pattern displayed by f (¢) accord-
ing to Fig. 17. If the maintenance period is 7, the number of maintenance cycles in the
service life is 7 /7, so that the following approximation can be made for this integral:

te T
[ 0= [ fe =GR (1) (54)

By equation the two expressions (53) and (54) we obtain the following formula for the
service life:

(d=A)-s| aT
L= —aT
180fp [(1—e
For T= 10 years: aT= (T]T5) In fy = (10/50) - (— 11.15) = — 2.3, whence we obtain:
_(d—=A4)-s
lL—*————lgofO -0.26

The earlier estimate of 1500 years for the service life thus reduces to:

_(0-5)-018 ~
tL-——————lgo 103 -0.26 =1500-0.26 = 390 years
For T'=20 years: aT=(I/To) In fo= (20/50) - (— 11.5) = — 4.6
20 —5) 0.
o= 2030008 00 0047 =70 years

180-107°

For this maintenance period of 20 years the resistance that the concrete itself offers to
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the advance of carbonation, previously neglected, would certainly appear to be worth
taking into account. According to Appendix C, the carbonation times are allowed to be
added together, so.that:

for =10 years: #, =390 + 40 = 430 years
for T=20 years: t, = 70 +40 =110 years

5.3 Quantification of the uncertainties

In probabilistic calculations a variable is described with the aid of a probability density
function. Such a function is in many cases characterized by a particular type of distribu-
tion (e.g., a normal distribution or a Weibull distribution), a mean value x and a stan-
dard deviation ¢. Instead of the standard deviation the coefficient of variation (V= /u)
is often used.

In the ideal case there are statistical data available for all the variables, enabling the
type of distribution, the mean value and the standard deviation to be unambiguously
determined. Mostly, however, as also in this example, the reverse of this situation
exists, namely, that there are no or, at best, scanty data available. The statistical prop-
erties will then have to be entirely estimated.

For many variables it is possible, basing oneself on information published in the
literature, on experience or on intuition, to specify values above or below which the
variable in question will in all probability not be situated. It is well known that, for the
normal distribution, there is 95% probability that a variable will have a value situated
between u — 20 and u + 20. It is thus possible to estimate the mean value and the stan-
dard deviation:

U () = 3{Xnigh + Xiow} (56)
0 (x) = i{Xnigh — X1ow} 57

For a log-normal distribution the corresponding formulae, so long as xnign/X1ow < 10 (see
Appendix B), are:

U (X) =/ Xhigh * Xlow (58)
V(x) =1 In {xnigh/X1ow} (59)

The choice between using the normal or the log-normal distribution will depend on the
physical nature of the stochastic variable. Many variables are by nature unable to take
on negative values, and in such cases the log-normal distribution is to be preferred. For
small values of the coefficient of variation (V< 0.10) the difference between normal and
log-normal is negligible for practical purposes. As for deciding between normal or log-
normal, on the one hand, and other potentially available distributions (e.g., extreme
value distributions), on the other, the present example hardly seems to provide relevant
arguments. The consequences of choosing a particular type of distribution for the
stochastic variables will be considered later on.
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In Table 3 a choice has been made for the type of distribution, the mean value and the
standard deviation for the various problem variables. Some of the variables have been
taken as deterministic because the scatter affecting them is considered to be very small.

Table 3. Review of the carbonation variables and the stochastic properties

type

description designation mean C.0.V.
d concrete cover nominal 15 mm log-normal 20 0.25
d concrete cover nominal 30 mm log-normal 35 0.14
A distance maximum-mean carb. depth mm  log-normal 5 0.20
R influence factor for the type of cement log-normal 2.0 0.15
K climate factor log-normal 0.7 0.20
w water-cement ratio log-normal 0.5 0.05
E constant mm deterministic 0.08 -

@ diameter of reinforcement bar mm deterministic 8 -

v. rate of corrosion mm/year log-normal 0.04 0.50
s thickness of coating mm deterministic 0.18 -

fo damage coefficient for coating mm/year log-normal 0.00001 1.00
T, durability parameter for coating year log-normal 50 0.50
T maintenance period year deterministic 10/20 -

The mean values adopted are those values which, in the preceding section, were rated
as providing the best estimates. The coefficients of variation are largely based on
estimates of the type indicated above. Only in the case of the concrete cover is it
possible to base oneself on statistical information obtained from measurements of the
depths of cover on existing structures [12].

The least scatter is presumed to occur in the water-cement ratio. The coefficient of
variation ¥(w) = 0.05 indicates that with 95% probability the value of wis between 0.45
and 0.55. The amounts of scatter in, for example, R and K are considered to be much
greater. For the rate of corrosion v the values 0.015 and 0.09 have already been
mentioned as the upper and the lower limit. On applying equations (58) and (59) we
obtain:

4 (ve) =+/0.015-0.090 = 0.036 mm/year
V(vs) =3 1n 6=0.45

Note: A more exact calculation yields u (v¢) = 0.040 mm/year and V(vc) = 0.47. These
values have been adopted in Table 3, where V(v) has been rounded off to 0.50.

The large coefficient of variation V(f;)=1 for the imperfection parameter fo
indicates a ratio fo ign)[fo tow)) = 50. The estimate for V( fo) is based on [18], where the
information given suggests that for any particular paint system it is difficult to estimate
fo to an accuracy within a factor of 10. Finally, V(7o) = 0.50 indicates that this durability
value is in all probability between 20 and 100 years.

5.4 Probabilistic analysis

On the basis of the mathematical model according to equation (55) and the stochastic
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properties listed in Table 3 it is possible to determine a probability density function of
the service life. This analysis will be confined to an approximate calculation for the
mean service life and the coefficient of variation. The procedure adopted for the
purpose is called the “level II/mean value approximation” or the “first order, second
moment approximation” (FOSM) in the literature [1].

According to this procedure the mean service life is obtained by calculating the life
on the basis of mean values for all the variables. This calculation has in fact already been
performed in Section 5.2. The standard deviation is determined by linearizing the func-
tion ¢ with the aid of a Taylor series. We then obtain:

) 5 (a1 2
=3 (30w )

The partial derivatives atL/an are calculated for the mean values of the stochastic
variables. For all four alternatives this calculation has been performed and the results
given in Table 4.

Table 4. Calculation of g(¢,) = ). (a%t,—_-a()(j) )2
J

alternative

X; description 1 2 3 4
d cover 415 1561 1905 21994
A distance between max. and mean carbonation depth 15 59 72 864
R influence factor for type of cement 74 1187 74 74
K climate factor 132 2111 132 132
w water-cement ratio 150 2395 150 150
@ bar diameter - - - -
v, rate of corrosion 6 19 6 6
s coating thickness - - - -
Jfo imperfection coefficient for coating - - 2304 112084
Ty durability value for coating - - 16178 89366
T maintenance period - - - -

a’(t) 792 7333 20820 224672

The scatter in the service life is found to be very great. Table 5 shows which variables
are most responsible for this scatter. Thus it appears that with alternative (1) particular-
ly the depth of cover is of major influence. If the cover is increased, criteria such as the
water-cement ratio and the climate factor become more important. If a coating is
applied, the durability value 7y predominates if maintenance is carried out every 20
years, whereas the initial imperfection coefficient f; predominates if maintenance is
carried out every 10 years. It is particularly these variables affected by a large amount of
scatter that should receive most attention in further research. A table such as Table 5
reveals that a probability analysis is essentially a sensitivity analysis, in which the sen-
sitivity 9#/0.X; of the variable Xj is weighed with a measure for the variation, the standard
deviation ¢ (X;), in relation to the scatter in the service life.

By means of the calculations in Sections 5.2 and 5.4 the mean value and the standard
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Table 5. Relative contributions of the stochastic variables to the variance of the service life for
the four design alternatives

alternative

X; description 1 2 3 4
d cover 52% 21% 9% 10%
A distance between max. and mean carbonation depth 2 1 0 0
R influence factor for type of cement 9 16 0 0
K climate factor 17 29 1 0
w water-cement ratio 19 33 1 0
@ bar diameter - - - -
v, rate of corrosion 1 0 0 0
s coating thickness - - - -
f, imperfection coefficient for coating - - 11 50
Ty durability value for coating - - 78 40
T maintenance period - - - -

total 100%  100%  100%  100%

deviation of the service life 7, have now been determined. The distribution of 7 is as yet
not known.

To begin with, the log-normal distribution once again deserves consideration as a
possible choice: the service life is definitely positive and the scatter islarge. Onthe basis
of theoretical considerations it can be shown that the distribution cannot be exactly log-
normal. According to equation (55) the service life is composed of three terms. For each
of these terms in itself there is indeed something to be said in favour of the log-normal
distribution (multiplication or division of variables conforming to this distribution will
again yield a log-normally distributed variable), but the sum of log-normally distributed
variables will certainly not be log-normally distributed. However, for the present
purpose it does not matter so much what is exactly correct, but what will provide a
serviceable model. To this end, the probability that the four alternative solutions will

 fail within the intended service life of 60 years has been calculated - on the basis of the
log-normal model and also with the aid of the “first order, second moment” method
(FOSM). In problems of this type the last-mentioned method provides a virtually exact
calculation of the failure probability. The results are presented in Table 6. From these it
can be inferred that the log-normal distribution yields good results. For the determina-
tion of the probability of failure for a log-normal distribution and given mean value and

Table 6. Comparison of results on the basis of the log-normal distribution with those obtained
with the FOSM method

P{t, <60}
design u(t) o(t) (log-normal Pt < 60}
alternative (year) (year) distribution) (FOSM)
1 34 28 0.86 0.76
2 123 86 0.20 0.13
3 103 144 0.50 0.39
4 417 474 0.05 0.05
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standard deviation, see Appendix B. Finally, the service life distributions obtained for
the first two alternatives are represented in Fig. 18 by way of illustration.

cover 15 mm
I'El 3{.lyears

cover 30 mm
M = 123 years

o
a
o

100
—— time t (years)

—— probability density f; (1)

Fig. 18. Service life distribution of two alternatives.

5.5 Cost analysis

For the purpose of economic optimization it is necessary to obtain insight into the cost
of the increased concrete cover, the application and maintenance of protective paint
coatings, and repai_rs. The cost figures adopted in this example are assembled in Table 7.
Uncertainties in these costs, and also the uncertainty in the interest rate to be applied,
have been ignored for the sake of simplicity.

Table 7. Review of cost data (in guilders/m?)

making and installing concrete slabs in new building

(h, = depth of slab in mm) 40 +0.4h,
replacement at 4, ~ 150 mm 275
removing concrete cover, applying sprayed concrete 225
removing concrete cover, repairing with polymer mortar 250
painting new concrete (epoxy) 50
painting existing concrete 80
maintenance of coating 40
repair of coating 80

The expectation of the capitalized cost, according to equation (5), will be adopted as
the basis of comparison for optimization and be written as:
g Vi g P{F} - D;
E{Ceap) =S + Lo g L
{ Cap} j§1 (1 +r’)J jgl (1 -f-r')J
where r’ (= real rate of interest) is taken as 0.02, while ¥; and D are respectively the cost
of maintenance and the loss (cost associated with damage or deterioration) in the year .
The planned service life of 60 years is so interpreted that up to and including the 60th
year of service all necessary repairs and maintenance are carried out. Therefore tg = 60
is adopted in the equation. Any unexpired service life of the structure beyond that
period, though probably available, will not be considered.
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In Table 8 the values for all three terms of equation (61) have been calculated on the
basis of the cost data given in Table 7, the service life data givenin Section 5.4 and a few
additional assumptions concerning the extent of the deterioration or damage. The
following explanatory comment is offered:

The slab is 1.60 m wide and 6.30 m long, so that its area is 10 m?. The point of ref-
erence for the cost comparison is represented by a slab with 15 mm concrete cover,
without coating. For this slab no extra cost is incurred for increasing the durability. For
the slab considered as alternative (2), with 30 mm cover, a sum of 15 x 0.4 = 6 guilders/
m?, i.e., a total of 60 guilders per slab, is spent on improving the durability. Applying a
coating to new concrete costs 50 guilders/m?, i.e., 500 guilders for the whole slab. This
extra investment occurs also in the alternatives (3) and (4).

Table 8. Expected capitalized costs (in guilders)

design alternative

cost item 1 2 3 4

extra concrete cover guilder - 60 - -
coating guilder - - 500 500
maintenance of coating guilder - - 675 1130
repair expectation guilder 860 170 260 40
E{Cpap} guilder 860 230 1435 1670

Maintenance is carried out only in the case of these two last-mentioned alternatives.
First, consider alternative (4) with maintenance at 10-year intervals. Maintenance costs
40 guilders/m?, i.e., 400 guilders for the slab. The calculation of the capitalized cost of
maintenance proceeds as follows:

‘f K _ 400 400 400 _ﬂ+ﬂ+ﬂ+@+
j:1(1+r')j—1.021°+1.0220 102 128 T 149 181 221
400

+369= 2.83 -400 = 1130 guilders

For alternative (3) it is assumed that maintenance at intervals of 20 years will, inhalfthe
number of cases that it is carried out, involve repair work costing 800 guilders instead of
400 guilders, i.e., 600 guilders on average. Hence the capitalized cost of maintenance is:

‘f K _ 600 600
iS4y 1027 T 1.02%

=675 guilders

The final item that has to be determined is the loss (the cost associated with remedying
damage or deterioration). In a more or less arbitrary manner the following possible cost
amounts may be distinguished (see also Section 5.1):
a. complete replacement:

10 x 275 =2750 guilders
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b. major repairs with sprayed concrete over an area of 4 m’:
4 x225 =900 guilders

¢. minor repairs with polymer mortar over an area of 2 m?:
2 x 250 =500 guilders

As a rule, the loss arising from refurbishment to remedy the effects of damage or
deterioration will be between 500 and 900 guilders; major repairs or complete replace-
ment is of less frequent occurrence. In the further calculation an average figure of 1000
guilders will be adopted for this loss. An exception is the occurrence of premature dam-
age in the case of alternative (1). If a slab with 15 mm cover and no coating is found to
be giving trouble (due to deterioration) in a number of places within about 30 years, it is
evident that complete replacement is often likely to offer the most rational remedy.
Otherwise it is fairly certain that more trouble will occur in other places on the slab after
a time. For alternative (1) and ¢, < 30 years the loss is accordingly taken as 2000 guild-
ers.

To calculate the risk, we must calculate the probability of failure in each year. For
convenience, six periods of 10 years will be considered:

S PIE}-D Dy Dy

0
;= PO <t <10} + ——5- P{10 < 1. <20} + ...
' (l+rl)_l (l+r/)10 { <n< }+(1+r,)20 { << }+ +

Deo
———-P{50 <1 <60
The probability P{50 < 7. <60} is equal to P{r. < 60} — P{r < 50}. All the data needed
for evaluating the risk are thus available. For alternative (1), i.e., 15 mm cover and no
coating, we obtain:

8 P{F}-D; 2000-0.09 2000-0.25 2000-0.29 1000-0.15

)

S +ry 102 10 T 10"

1000-0.09 N 1000 -0.04
1.02° 1.02%

=150 + 336 +265 + 68 + 33 + 12 =860 guilders

For the period 0 < #;, < 30 the loss has been taken as 2000 guilders and for #, > 30 it
has been taken as 1000 guilders, as explained above. The factors 0.09, 0.25, etc. are the
probabilities of failure in the period 0-10 years, 10-20 years, etc. For the determination
of these, see Appendix D. The calculation for the other design alternatives is entirely
similar (except that the loss is then 1000 guilders for the entire service life). The results
are given in Table 8.

5.6 Conclusion

By far the most advantageous solution is found to consist in increasing the depth of con-
crete cover. The direct cost that this entails is low (60 guilders), while the deterioration
or damage occurs only after a long time. To remedy these defects it is often sufficient to
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carry our relatively simple repairs, and the interest ensures a substantial decrease in the
capitalized cost.

It is notable that applying and maintaining the coating is more expensive than alter-
native (1), despite the marked reduction of the probability of deterioration or damage.

In view of this result the coating should be applied primarily for aesthetic reasons. its
protective effect being an additional bonus. (Alternatively, cheaper paints for applica-
tion to concrete may be used if the object is simply to improve the appearance of the
structure; such paints are in general not impermeable to carbon dioxide, however, so
that in this respect they offer little or no protection). An advantage associated with the
use of protective coatings is the reduced probability of inconvenience to the residents or
users of the building caused by repair work. This applies only to the alternatives requir-
ing frequent maintenance.

Finally, it should be pointed out that the results of the calculations are based on initial
concepts and data which (though representing the most realistic possible assumptions)
are still debatable. The example presented here is intended only to open the discussion.

6 Summary and conclusions

During its construction and its subsequent lifetime a building has to perform a great
many functions with regard to, inter alia, strength and serviceability. The conditions
under which it does this will change in course of time, and the properties of the building

itself may also be time-dependent. If, after the passage of time, the building ceases to be
able to perform a function, maintenance or replacement will become necessary. Other-
wise the building will then have reached the end of its technical service life.

Assessing the durability aspect of a building is no simple matter. The conditions
under which the building has to function are comparatively uncertain. This also applies
to its properties. Because of these uncertainties, the service lives of essentially similar
buildings under apparently similar conditions may vary considerably. The concept of
service life is therefore difficult to apply in a meaningful way. For this reason a first step
to developing a durability philosophy has been attempted in the present report. In order
to make it serviceable for practical purposes, a limited list of durability data has been
compiled, based on a somewhat arbitrary choice of entries in seeking to restrict it more
particularly to reinforced concrete.

In view of the considerable scatter that may occur in the service life, it is by no means
easy to take appropriate measures for achieving optimum durability. This report has
therefore had recourse to risk and reliability analysis, which has proved its suitability in
dealing with problems of structural safety. Despite the scatter in loads and structural
properties, a conceptual pattern for dealing with the scatter is established in a rational
and orderly manner. As this approach to durability corresponds to the approach adopt-
ed in matters of structural safety, the methodology applied can claim to be consistent.

In carrying out a reliability analysis, a list is first compiled of all the hazards, the way
in which the structure responds to them (mechanisms) and the effects. By way of illus-
tration an overview relating to concrete structures is given. Next, a selection is made.
The hazards which occur frequently or have serious effects are considered in more
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detail. At the same time the criterion applied is that it must be economically advantage-
ous to take protective measures. In considering the economic aspects it is necessary to
take account not only of the investment cost, but also of the operating expenses, interest
and depreciation. All these costs are largely determined by the design features and the
manner of construction. The report enters into an economic study of capitalized cost,
cost on a yearly basis and dynamic cost price rent. For this purpose the service life is
assumed to be stochastic. These matters are explained and illustrated with reference to
some simple examples. The examples relate to the problem of determining the
optimum depth of concrete cover with respect to the carbonation of concrete if the
required service life is specified and to the problem of determining the optimum service
life in a case where the concrete surface is affected by wear.

A more comprehensive optimization analysis of an outdoor gallery slab built of rein-
forced concrete is then given. To simplify the problem, only the action of carbon
dioxide on the concrete (carbonation), which may result in corrosion of the reinforce-
ment, is considered. Several design alternatives are analysed. Despite the relatively
great scatter in the service life associated with each of these alternatives, it is found to be
suitably possible to quantify the total cost entailed by a particular alternative. As a
subsidiary feature of the result of the analysis, the probability of repair work and the
attendant nuisance to residents or users of the building is indicated.

The optimization calculations carried out in the report show that for reinforced con-
crete it is feasible in principle to graft the durability philosophy on the methodology of
reliability analysis. As a result, for reinforced concrete structures the aspects of safety
and serviceability, but also durability, can be approached in a consistent and properly
coherent manner. For a design which in principle will be based on cost optimization
there are then not likely to be contradictions or discrepancies between safety, service-
ability and durability. In principle, too, the consistent approach will result in greater
simplicity. Hazards, mechanisms and effects are all defined and considered in one and
the same way.

The worked examples presented in the report show that the probabilistic approach
also leads to a sensitivity analysis. The most relevant parameters in the stated problem
are directly recognized. For further investigation it is not necessary to collect more
information about all the variables involved. This need only be done for the relevant
variables. Thus an improvement of the result is obtained without too much effort.

The preliminary study has, for pragmatic reasons, been confined to the structural
material concrete, which is called as a durable material. The examples give here show,
however, that this is true only in a qualified sense. All the same, this does not alter the
fact that other materials are used whose service life has an entirely different dimension.
The consideration of the durability of paint systems applied to concrete surfaces, as
envisaged in the examples, suggests that dealing with these and other materials need
not entail any major problems. Hence it would appear justifiable to extend the investi-
gation towards other building materials such as masonry, metals, timber, plastics,
asphalt, glass, etc. However, it will first have to be verified that the expectations based
on this approach are fulfilled.
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APPENDIX A
Capitalized cost in the case of free service life

If the service life of an object - a capital asset - is determined only by the condition of
the object itself, the following reasoning must be followed when considering the prob-
lem on the basis of capitalized cost.

At the beginning of the service life there should, besides the direct investment S, be a
reserve R available from which, after nyears have passed, the replacement structure can
be financed. The capitalized cost is then:

Cap=S+R (A1)

After nyears, R has increased to R(1 +r')", and the following condition must be satis-
fied:

RA+r)=S+R (A2)

For the sake of a clear understanding, there are three points to note:

1. The real interest is introduced, so that there is no need to take account of cost
increases in S due to inflation.

2. Inaddition to the direct investment S (to pay for the structure initially), there should
- on the assumption adopted here - be reserve resources R available at the end of n
years in order to finance the next (replacement) structure, etc.

3. It is not necessary actually to possess the amount R +S: the purpose is only to
establish a basis for comparison, assuming that there will exist a permanent need for
the capital asset in question.

From equation (A2) it follows that:
S

Re——"2 A3
(1+r)—1 (A3)
On substitution into equation (A1) this gives:
S (1+r)"
Cop=S+—7T—7—=S{+—-— Ad
P a1 a+/)—1l (A4)

Example: If ' =0.02 and n= 50, then Cg,, = 1.54S.

Finally, it is to be noted that, except for a factor ', equation (A4) corresponds to equa-
tion (21) for the cost analysis on an annual basis. The interesting point about this is that
in equation (21) the existence of a permanent need is not presumed. However, in this
equation, too, such need is implicitly present: for example, if the service life is opti-
mized, there is no restriction as to avoiding (unnecessarily) long service lives.
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APPENDIX B
Estimation of 4 (X) and V(X) for a log-normal distribution of X

If X has a log-normal distribution with u (X) and o (X), then Y'=In X has a normal distri-
bution with:

u(Y)=Inpu(X)—10%(Y) (BI)
aX(Y)=In {1+ V*(X)} (B2)

where V(X) =g (X)Ju (X)

The estimates Xjow and Xnjgn correspond to:

Yiow =In Xiow (B3)

Yhigh = In Xhign (B4)
The mean value of Y is thus obtained from:

w1 (Y) =3(1n Xiow +1n Xnign) = 1n yXiow - Xnign (BS)
The standard deviation of Y is estimated from:

a(Y)=4(n Xhign — In Xiow) (B6)

If V(X) is small, then equation (B1) can be approximated by u (Y) =In u (X) = u (In X)
and equation (B2) by o (Y) = V(X). Conversely, it follows directly that:

u (X) =y Xiow - Xhigh (B7)
V(X)=1ln (f}l‘gh) (BS)

If V(X) is not small, then equations (B1) and (B2) will have to be used.
Putting a = In {Xhign/Xiow}, We obtain for the estimated value of ¢ (Y) from equation

(B6): a(Y)=3a

Therefore it follows from equation (B2) that:
Vi (X) =e'l' 1 (B9)
On solving equation (B1) for 1 (X) we obtain:
u(X)=u(Y)+30°(Y)
With ¢ (Y) =a and u(Y) from equation (B5) this gives the following result:
1 (X) =V Xiow - Xiign - P (B10)
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APPENDIX C
Calculation of the carbonation time for a coating

In [8] the coating is replaced by an equivalent concrete cover:

_HitSi

S0
Ub

With s as the equivalent concrete cover, s; as the coating thickness and y; and u;, as the
CO,-diffusion coefficients of respectively coating and concrete with respect to air. The
total penetration time is in that case:

(d—A+s0)? 58
L

with:
R-K(46w—17.6)

A= 27
Working out this relation gives:

(d—A)2+2(d—A)-s0
A? A?

L=

The total penetration time is also the sum of the two parts, namely the normal concrete
carbonation time and an additional time because of the coating. For the present only the
second term will be considered:

_ 2(d— A) i) _ 2((1— A)ﬂjSi

- A? T Aru

In [8] it is derived that uy, = 360/A2, so that follows:

At

2(d— A)yisi _ (d— A),uisi
360 - 180

Aty =

The diffusion coefficient y; is the value for a perfect coating. However, due to deteriora-
tion the coating becomes imperfect, and we may take that into account by working with
the effective diffusion coefficient u.:

_ Ui
Be= T -1

In which f'is the degree of imperfection due to pores in the coating. As u; >> 1 this can
also be written as:

1 1

_=_..+
He Ui J
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As f has the order of magnitude of 10 ~° and y; the order 10° it suffices that ue = 1/f. In
that case Arp is equal to:

_ (d— A)Si
At = —18(—)}.—

This formulae has been used in Chapter 5.
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APPENDIX D

Calculation of the expected damage costs of the gallery slab

If X has a lognormal distribution (see Appendix B) with a mean value u (X) and a stan-
dard deviation ¢(X), than Y=1n (X) has a normal distribution with:

a*(Y)=In (1 + V%)
#(¥) =In u(X)~ 1o(7)
o =a(X)/uX)

The next table gives the mean values and the standard deviations of the service life #.
according to section 5.4 and the values x(Y) and ¢(Y) with Y=1n .

design u(t) a(t) u(Y) o(Y)
alternative (year) (year)

1 34 28 3.27 0.72
2 123 86 4.61 0.63
3 103 144 4.09 1.04
4 417 474 5.62 091

The probability P{. < t} is calculated according to:

Pl<t}=P{lnt<Int}=P{Y<Int}=®(—p)

with:

_u(¥)—Int
P=""m

Y=Int

The next table gives successively the reliability index g, the probability P{#. < t} and
the probabilities P{(z— 10) < 7. < ¢} for ¢= 10, 20, ... 60 year. The indexes 1, 2, 3 and 4

refer to the design alternatives.

t 10/ 20j 30/ 40/ 50/ 60j
Int 230 3.00 3.40 3.69 391 4.09
B, 135 0.38 —0.21 —0.58 —0.89 ~1.14
B 3.67 2.56 1.92 1.46 1.11 0.83
B 1.72 1.05 0.66 0.38 0.17 0.00
B 3.65 1.88 2.44 2.12 1.88 1.68
Pt <1} 0.09 0.34 0.58 0.73 0.82 0.86
Pyt <1} - 0.006 0.03 0.07 0.14 0.20
Pyt <1} 0.05 0.15 0.25 0.34 0.43 0.50
Pt <1} - 0.002 0.007 0.02 0.03 0.05
P{(1—10) <1, <1) 0.09 0.25 0.24 0.15 0.09 0.04
Pf(t—10) <1, <1} - 0.006 0.02 0.04 0.07 0.06
Py{(t—10) <1, <1} 0.05 0.10 0.10 0.09 0.09 0.07
Pi{(1—10) <1, <1} - 0.002 0.005 0.01 0.01 0.02
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The calculation of the damage costs will be done with r=0.02 and D; = 1000 guilders
except for design alternative 1 where D, = 2000 guilders for # <30 years.

General formula:

LP{F}-Dif(1+1) =

. + P{50 <t < 60} - Dgo/ (1 + 1

Evaluation for the four alternatives:

P{0 <t <10} - Diof(1+7)" + P{10 < 1. <20} - Doof (1 +r)** +

Al 1. 2000:0.09 2000-0.25 2000-0.24 1000-0.15 1000-0.09  1000-0.04
©o1.02" 1.02% 1.02%° 1.02% 1.02%° 1.02%°
=%+% il%+%+§%+—;£—8—860 guilders

Alt 2: 132 139 +%+%+%+%= 170 guilders

Alt3: 755+ 1319 + ILSI + 2?31 2329 + 35;)8 = 40 guilders

Alt 4: % 11 ?g + 111801 + 293 T+ 2929 37;)8 260 guilders
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