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Preface

This issue of HERON reports on a mainly theoretical, but also experimental, investiga-
tion of the bond-slip model for the analysis of reinforced concrete structures. As sub-
project 2 it formed part of the overall “Betonmechanica” (“Concrete Mechanics”) re-
search project, stage 1, which was carried out by Rijkswaterstaat (Netherlands Govern-
ment Department for Public Civil Engineering Works), TNO-IBBC (Institute TNO for
Building Materials and Building Structures), and the Universities of Technology at
Eindhoven and Delft.

“Betonmechanica”, stage 1, is subdivided into four sub-projects as indicated in Fig.
1.1. Sub-projects 1, 2 and 4 relate to the modelling of the material behaviour, such as
cracking and bond. This investigation is being carried out by specialists in concrete
research, and the results it yields serve as input for sub-project 3, the basic models of
which are used for describing the global (overall) behaviour of concrete structures. In
connection with this research work, two computer programs have been produced,
namely the “micro” model and the “macro” model. These have been developed by
specialists in numerical methods and structural mechanics.

The purpose of this approach to the subject is to focus attention on the basic com-
ponents with which the behaviour of reinforced concrete structures can be described.
At the same time, other ways and means are being sought with a view to incorporating
these basic models in global models with which finally the behaviour of reinforced con-
crete structures can be studied, so as to improve our fundamental knowledge of the be-
haviour of this material. More detailed information concerning the object and method
of the “Betonmechanica” project, stage 1, and the subdivision of the research work into
the four sub-projects is given in [1].

BASIC GLOBAL
MODELS MODELS
crackzone
3
micro -
model
2 j 4
EXPERIMENTAL
bond zone 3 VERIFICATION
macro_ /
‘ mode/
literature

Fig. 1.1. Position occupied by sub-project 2 in the work of A26 “Concrete mechanics”.

The present report deals with the modelling of the behaviour of the bond-slip zone. The
other subjects will be dealt with in the HERON issues 1a and 1c of this volume.
The joint project is being supervised and partly financed by CUR-VB (Netherlands
Committee for Research, Codes and Specifications for Concrete), which set up the
Working Committee A 26 “Betonmechanica”. This Working Committee is constituted



as follows: prof. ir. B. W. van der Vlugt (Chairman), prof. dr. ir. J. Blaauwendraad (Secre-
tary), prof. ir. A. L. Bouma, prof. dr. ir. A. S. G. Bruggeling, prof. ir. J. W. Kamerling,
prof. ir. H. Lambotte, prof. Dr.-Ing. G. Mehlhorn, ir. Th. Monnier, prof. Dr.-Ing. H. W.
Reinhardt, ing. A. C. van Riel, ir. J. C. Slagter (Mentor), prof. ir. J. Witteveen, and prof.
Dr. F. H. Wittmann. The authors are indebted to the members of this committee for
their contributions, help and encouragements.

The work for sub-project 2 (“The bond-slip zone”) was carried out by TNO-IBBC
under the guidance of ir. Th. Monnier. The numerical and theoretical work involved in
this sub-project was done by ir. A. K. de Groot and ir. G. M. A. Kusters, while ir. F.B. J.
Gijsbers and ir. M. Dragosavi¢ undertook the experimental work.

This publication is to be regarded as a comprehensive summary of the results ob-
tained, which have been reported in greater detail in [2] to [9]. This English translation
has been prepared by ir. C. van Amerongen.



NUMERICAL MODELLING OF BOND-SLIP BEHAVIOUR

Summary

The development and verification of a numerical bond-slip element suitable for plain as
well as for deformed (ribbed) reinforcing bars is reported in this issue of HERON. In the
preface it is explained how this study forms part of the overall “Betonmechanica” pro-
jectin The Netherlands. First, the formulae for the axially symmetric case are derived;
then the results are generalized to the three-dimensional case. Next, a procedure for
effecting the transformation to the case of plane stress is proposed. After the theoretical
treatment of the subject, the suitability of the bond-slip element is assessed with
reference to experimental results. More particularly, these relate to tests on cylindrical
specimens by Dorrand Mehlhorn [10], tests on rectangular prisms [4] and tests on speci-
mens representing the end portions of beams [9]. Finally, on the basis of the experience
gained in the course of this verification, recommendations are made for the various
parameters that govern the behaviour of the bond-slip element.



Numerical modelling of bond-slip behaviour

1 Introduction

The study relating to the basic model for bond is more particularly concerned with the
bond-slip zone of a beam as shown in Fig. 1.2. The region of constant bending moment
as well as the end part of the beam will be considered.

The initial intention was to carry out experimental research, but it soon became
apparent that part of the investigation would have to be of a numerical character, the
reason being that the global models for which the necessary constituent units had to be
provided are two-dimensional. An actual beam section (Fig. 1.3a) is conceived both in
the micro model and in the macro model as a section in which the material properties do
not vary in the transverse direction (Fig. 1.3b). Since experimental research on the
bond-slip zone is always performed on prismatic specimens as shown in Fig. 1.4, some
sort of “translation” is required. More particularly, the experiments yield three-dimen-
sional (3D) results which, for the purpose of sub-project 3, have to be converted into
two-dimensional (2D) results.

It was therefore decided to verify the experiments with the DIANA program which
TNO-IBBC had at its disposal for the analysis of three-dimensional structures. For con-
crete structures, however, a numerical bond-slip element had to be designed for this
purpose and be incorporated in DIANA. This numerical bond-slip element will be dis-

y4 < Y
constant varying
moment moment

Fig. 1.2. Regions with which sub-project 2 is more particularly concerned.

a) actual section b) schematization

Fig. 1.3. Schematization of a beam cross-section.
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Fig. 1.4. Test specimens for determining the bond-slip relation.

cussed in the present report, and the verification of this model with reference to experi-
mental results will then be described. It will be shown that this verification is proceed-
ing satisfactorily.

With regard to the experimental part of the research it was decided by the present
authors not to carry out for themselves the basic tests on the axially symmetric model
(Fig. 1.4a), since the results of a comprehensive series of tests by Dorr and Mehlhorn
[10] were available.

For general guidance, however, three tests were performed on specimens as shown in
Fig. 1.4b [4]. Both the test series mentioned here in fact related to the region of constant
bending moment as indicated in Fig. 1.2. The region near the end of the beam from Fig.
1.2 was investigated in two tests [9]. Interim reports on the work have been issued at
various times in recent years [2] to [9].

The whole study project is summarized in the present report, which is subdivided as
follows.

First, the numerical model employed, with its possible variants, will be dealt with. In
Chapter 2 attention will be focused on the axially symmetric element. Next, the general
3D element and a symmetric variant thereof are discussed in Chapter 3. Some general
supplementary matters are treated in Chapter 4, after which, in Chapter 5, it is explain-
ed how the 3D results obtained could be translated into 2D results for the micro model.
The behaviour of the materials concrete and steel is schematized in Chapter 6, and
the numerical model is then tested and verified with reference to experiments. Chapter
7 deals with the verification of the axially symmetric element with the aid of the tests by
Dorr and Mehlhorn [10]. A parameter study has also been carried out. In Chapter 8 the
symmetric variant of the general 3D model is verified with reference to the TNO-IBBC
series of tests on prisms [4]. Verification on the basis of experiments is also done in
Chapter 10 for the general 3D model, but now with reference to the tests on the beam
end parts [9] reported in Chapter 9. The conclusions and recommendations are present-
ed in Chapter 11. Finally, it is to be noted that the numerical model employed in this
study concerned with the bond-slip region can be regarded as a model that comprises all
the possibilities offered by the spring models variously described in the literature (see
Fig. 1.5)[13] to[17]. Most of these models are discontinuous, i.e., springs are assumed to
be installed only at the nodes. Animprovement in behaviour is obtained by using a con-
tinuous spring model, as exemplified by that proposed by Schifer [14] and the model
described in the present report.
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Fig. 1.5. Various possible spring models.
a. spring in one direction (ref. [13], [14])
b. two independent springs (ref. [15], [16])
c. springs at an angle (ref. [17])

2 Constructing the model for the axially symmetric element
2.1 Bond-slip zone

Bond can be thought of as the shear stress or force between a bar and the surrounding
concrete. The force in the bar is transmitted to the concrete by bond, or vice versa.
According to Lutz and Gergely [19], bond can be conceived as comprising three com-
ponents:

- chemical adhesion,;

- friction;

- mechanical interaction between concrete and steel.

Bond of plain bars depends primarily on the first two of these components, though there
is some mechanical interlocking due to roughness of the bar surface. Deformed bars,
however, depend primarily on mechanical interlocking for superior bond properties.
This does not mean that friction and chemical adhesion are negligible in the case of
deformed bars, but that they are secondary.

The above-mentioned aspects will have to play a part in a numerical model. For con-
structing the model it is helpful to begin with a description of the behaviour of a plain
reinforcing bar. The shear stress measured on such a bar, and designated by 1y, can be
plotted against the associated slip displacement. The curve representing this function is
shown in Fig. 2.1a, which could be schematized to so-called rigid-plastic behaviour as in
Fig. 2.1b. For describing the actual behaviour within a local context this is an entirely
justifiable assumption. At the interface of the concrete and reinforcing steel the connec-
tion is completely rigid so long as the shear stress ry is below a certain limiting value.
Slip becomes possible only after destruction of the bond. However, measurements will
not reveal this rigid-plastic behaviour; a behaviour type more like that in Fig. 2.1¢ will
be found instead. This is due to the circumstance that the strains in the concrete cannot
be measured exactly at the interface itself, but always only at a certain distance there-
from. Hence the actually measured slip value is affected by the sliding within the con-
crete between the interface and the strain gauges.

The fact that the behaviour envisaged in Fig. 2.1¢ will also be adopted in the numeri-
cal model is, however, in no way associated with the phenomenon just referred to. It is

10
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Fig. 2.1. Example of ry-Au-relations.

instead due to the need to provide, not just a local, but a rather more “global” (overall)
description of the bond-slip layer. For example, as a result of cracking, there will exist
between the local regions where rigid-plastic behaviour occurs other regions where the
bond is distinctly less effective, so that for the purpose of a global description Fig. 2.1cis
more appropriate than Fig. 2.1b.

The rising branch in Fig. 2.1c will be defined with the so-called slip modulus S, as
follows:

o=SAu 2.1)

The horizontal branch of the diagram is determined by a maximum stress 1., which
could also be defined as:

Imax = S Aumax (22)

The magnitude of 7, and thus also that of Auy,,, will be a function of the radial stress o,
which will be further considered in Section 7.3.4.

This fully describes the behaviour of a plain reinforcing bar. In the case of a deformed
(ribbed) bar, however, there will be a slip resistance due to the ribs in addition to the
above-mentioned slip resistance S Au and S Aun,y respectively. In the hypothetical case
that §'= 0 this mechanical interlocking will still be acting. This can be conceived with
reference to the behaviour of the specimen shown in Fig. 2.2 [12], where the bar is seen
to be surrounded by compression cones - inclined at an angle ¢ with respect to the ver-
tical - between the cracks. The action of the forces in a segment of the axially symmetric
specimen can be clarified with reference to Fig. 2.3. The “prisms” shown in that dia-
gram are conceived as being able to undergo frictionless displacement in relation to one
another. Each prism is of such section that in the direction perpendicular to the centre-
line of the bar a total force o, is present in the prism.

If one such prism is given a unit displacement Au while the displacement Aw is re-
strained (see Fig. 2.4a), the change in length will be:

Al= —Ausin ¢ (2.3)

11
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Fig. 2.3. Bond-slip model.

The associated normal force, whose magnitude is o,/cos ¢ (see Fig. 2.4¢), can be written
as:
o, Al

cos (o_E’ /

(2.4)

where E, is a measure of the stiffness of the bond-slip layer. According to Fig. 2.4a the
following expression can be written for the length /:

Br
/= cos o 2.5)
whence, with equations (2.3) and (2.4), is obtained for o,:
= — E sin ¢ cos’g Au (2.6)
g,= ﬁr Q Qo .

12
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Fig. 2.4. The relation between Au, Aw, 1, and o,.

Now if the prism is given a unit displacement Aw while the displacement Au is re-
strained (see Fig. 2.4b), the change in length will be:

Al=Aw cos ¢ 2.7
whence, with equations (2.4) and (2.5):

E

Br

The total stress o, is obtained by summation of equations (2.6) and (2.8), giving:

0= coS’p Aw (2.8)

a:—@(sin cos’p Au—cos’p Aw)
= = 5 (sin g cos’ 0 Aw (2.9

or with:
k=tg ¢ (2.10)
this expression becomes:

E; cos’p
-~

From Fig. 2.4¢ it moreover appears that there is a shear component 7, expressed by:

o,=

(k Au— Aw) (2.11)

= —o0,1g p= — ko, (2.12)

In this expression kis the so-called rib factor which represents the effect of the “deform-
ity” (ribbed surface configuration) of the bar, i.e., mechanical interlocking.

It has been established that in the case of a plain reinforcing bar a shear stress 7, can be
developed without this having consequences with regard to o, (equation 2.1). The mag-
nitude of 7., (equation 2.2) is a function of ¢,, however. It has furthermore been shown
that for the deformed bar, in the extreme case where S = 0, a shear stress 7, can be resist-
ed, in conjunction with which a radial stress ¢, will now be produced (equation 2.12).

13
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In general, for a deformed bar the magnitude of S will be non-zero. This being so, the
combination of the two models described above would appear to be a reasonable point
of departure for further research. In the combined model the shear stress 7 is conceived
as being composed of the sum of the slip resistance 1, and the mechanical interlocking 7 :

T=To+ Ix (2.13)
or with equations (2.1) and (2.12):

=S Au— ko, (2.14)
With equation (2.11) and (2.12) this can be written as:
T 1 0|[Au K> —k|[Au
= . + ﬂr . ( . )
o, 0 0 Aw —k 1 Aw

This almost completes the model, except that it has yet to be indicated how the limiting
magnitude A umax from equation (2.2) has to be dealt with. This will be done in Section
4.1and 7.3.4. There are two approaches to the practical application of the model that has
been developed. The first consists in inserting the bond-slip layer as a separate element
between a concrete and a steel element. However, the second approach has been
chosen, in which the bond-slip element and the reinforcement element are combined.
After Section 2.2, the present report is concerned only with this combined element,
which, for the sake of convenience, will be referred to merely as the “bond-slip ele-
ment”, even though this is in fact an incomplete designation for it.

2.2 Combining the bond-slip element with the reinforcement element

In this study reported here, the bond-slip element has been combined with the element
for the reinforcing bar. The behaviour of the bond-slip element is determined by two
degrees of freedom, namely, Au and Aw, while the element for the bar likewise has two
degrees of freedom, namely, the longitudinal strain ¢, and the radial strain ¢,. In the
combined element the degrees of freedom Awand ¢,are united in the degree of freedom
Av, so that three degrees of freedom remain. As indicated in Fig. 2.5, this combination is
expressed by:

Av=Aw+ re, (2.16)
Since the following expression is valid for ¢,:

o o,

a=(l—v)g-vg 2.17)
and since:
a, g,
a=p 20 (2.18)

14
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¢, can alternatively be written as follows:
1+Ux 1—21}5 [
&= ( ) ) — U5, (2.19)
E;
Equation (2.16) can now be put in the following form:
r(1+ ve)(1—2vy)0,
Aw=Av— ( )2 ) + rvse, (2.20)
Equation (2.9) thus becomes:
0,=Cy(rvses — k Au+ Av) 2.21)
where C, is:
C= ! 2.22
T (i u)(i=2u) (2.22)
E cos’ep E,

For the sake of simplification this relationship will, in the further treatment of the sub-
ject, be approximated by:

Es

In this simplified relationship the coefficient @ depends mainly on the quality and thick-
ness of the boundary layer around the reinforcing bar. Hence this coefficient « is to be
regarded as a kind of layer thickness coefficient. Its order of magnitude is found to be
0.5-1.

For 7, is obtained from equations (2.12) and (2.21):

1= Cy(— krvse, + k* Au— k Av) (2.24)

15



On addition of equations (2.24) and (2.1) the total shear stress is found:

1= Cy(— krvse,+ k> Au—k Av)+S Au (2.25)
Finally, from equations (2.18) and (2.21):

00=Eseq+ 20, (vire,— vk Au+ v, Av) (2.26)
In summarized form the equations (2.26); (2.25) and (2.21) can be written as:

2ES &Eql Eql

2 -
04 P 0 0 7 4v; —2kv; 20, 2
rl=l0 S 0| |Au|+C| —2kv, K —k || Au 2.27)
o, 0 0 0 Av v, —k 1 Av

In the vector comprising strains the product &,7/2 is employed in lieu of ¢,. This has
been done in connection with determining the variation of the internal work, which will
later take place implicitly in establishing the stiffness matrix of the element.

For this variation the following expression holds:

64y = | | [ 0406, dV+ § § (16 Au+ 0,6 Av) dA4 (2.28)

v A

This can alternatively be written as follows:
&l
64, =11 |0.0 - + 10 Au+ 0,0 Av) d4 (2.29)
A

which becomes apparent on considering that for a circular section with radius r:

1 i
A=27r{dx and V=m?]dx so that: V=§A
0 0

Equation (2.27) can be written in the following shorter form:

&qtr
Oq C4 - C5 C5 7
T |=| —Cs C, —GC|x|Au (2.30)
oy C —G C | . Ay
or in abbreviated notation:
1=C Au
where:
C=8S+KkC=S+kGC (2.31)
E,
CG=a ~ (2.23)
Cy = kG, (2.32)

16



2E, 2E;
G== +407C =" (1+2av)) (2.33)
C5 = 2kUsC2 (234)
Cs=20,C (2.35)

As already stated, in these formulas the rib factor krepresents the effect of the “defor-
mity” (ribbed surface configuration) of the bar, i.e., mechanical interlocking.

2.3 Further elaboration

The components for establishing the element stiffness matrix of the combined bond-
slip element (including the reinforcing bar) are now ready. In the now following section
of this article it will briefly be shown how this is done. More particularly, this will relate
to the axially symmetric 6-node bond-slip element which is represented in Fig. 2.6b and
is compatible with the axially symmetric 8-node concrete element represented in Fig.
2.6a. The bond-slip element is numerically integrated, using Gauss’s method.* The in-
tegration points employed for the purpose will accordingly be referred to as Gauss
points in this article.

The interpolation polynomial* for the displacements has been chosen as follows:

Ni= —3¢(1-9)
Ny=(1-2) (2.36)
N3=’;E(1+Z)

v

\
\
\ =| \ | U
Al 6
\ 1
\ / \
|~
Uy AUZ Au3
a) ® 8nodes b) ® 6nodes

* 3 i
* Lgauss points gauss points

Fig. 2.6. Axially symmetric elements.
a. concrete element
b. bond-slip element

* For an explanation of this concept see, for example, [18].
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This means that for the strains the following derivatives are used for interpolation:

v _ o

d¢ 2

dn,

=k (2.37)
dN; ,

a4z = E+5

From these equations it is possible to calculate dN;/dx by multiplication of dN;/dé and
dé/dx where dé/dx follows from equation (2.46).
The generalized strains - i.e., the strains that determine the internal stresses - can

thus be expressed in the nodal displacements:

&t rdN, rdN, rdN; Uy
ca i t/
T L B T R e . P i
Au -—-Nl —Nz —N3 N1 N2 N3 0 0 0 V1
Av 0 0 0 0 0 0 N1 N2 N3 V)
V3

(2.38)
or in abbreviated notation:

Au = Bu°

The correctness of the above relationship is apparent, inter alia, from Fig. 2.6b, from
which it is seen that the following relations are valid for the slip Au:

Au1 = Uy — U
AU2 =Us — Uy (239)
Au3 = Ug— U3

The displacements v, to v of the nodes 4 to 6 need not occur in the system, since they are
zero anyway on account of the axial symmetry.
The steel strain ¢, depends only on the displacements u4 to us, in accordance with:

_du 2.4
Sa—a (2.40)
where:
du _ dN1 sz dN3 2.41
= d Wty Ut g, Us (2.41)

The element stiffness matrix S® now follows from the matrix C defined in equation
(2.30) and from the matrix B in equation (2.38). It is expressed by:

S°= {B'CB d(4) (2.42)
A

18



where:

d(A4) =2rrdx 2.43

so that: (“)=2m ( )
X = X3

S=2ar | B’CB dx (2.44)
X=Xy

which can alternatively be written:

el dx
S°=27r | B'CB--d¢ (2.45)
=1 dz

In this equation dx/d¢ follows from:

d_x_8N1 6N2 aN3
42— 0z T oz Bt a7 % (2.46)

Next, the overall stiffness matrix for the structure to be analysed can be compiled in the
usual way. How this has been arranged in the DIANA program package need not be
further described here.

2.4 Tyings

The model that has been developed up to this point does, however, still suffer from a
small practical drawback, which will be explained with the aid of Fig. 2.7. This diagram
shows part of a reinforcing bar (length dx) on which is acting a shear stress rthat brings
about a reduction of the axial stress g,. The following relation applies:

1(27r dx) = do, (7r?)

or: daa
i (2.47)

1
T=5r

The shear stress is therefore proportional to the derivative of the normal stress. In the
element under consideration a quadratic distribution of the displacement field is as-
sumed, so that a linear distribution of the strain and thus also of the axial stress o,
occurs. The associated shear stress is therefore constant according to equation (2.47).
This is not in agreement with what is stated by equation (2.30):

&
T= —-Cs 7+C1 AU—C3 Av
T
- - - — — —

% g 2r %quddq

- - — - - -—

o dx »

Fig. 2.7. Relation between ¢, and 7.
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In this expression 7is mainly dependent on Au and Av, which display quadratic behav-
iour while only a minor portion displays linear behaviour as a function of ¢,.

This discrepancy can be dealt with by the application of so-called tyings. By this is
understood the possibility offered by DIANA to make a degree of freedom linearly
dependent on a certain number of other degrees of freedom. The tyings introduced are
then, first:

Auy =5(Auy + Aus) (2.48)
or according to equation (2.39):

Uy = s + Jh — 3hs + 33 — s (2.49)
and second:

Avy = 3(Avi + Avs) (2.50)
or:

vy = Vs + 31 — s+ Vs — V% 2.51)

Since v4 to v are zero, the last-mentioned equation can be written as follows:
V)= %Vl + %V3 (2.52)

The effect of applying the tyings indicated above is that now Auand Av, and therefore v,
behave linearly, just as ¢, does, so that there is'no longer any discrepancy in equation
(2.30). The discrepancy with equation (2.47) still exists, though to a reduced extent
(constant versus linear behaviour). There is, however, nothing more that can be done to
remedy the matter, since the phenomenon in question is inherent in the finite element
method. With increasing refinement of the elements employed, the drawbacks asso-
ciated with this effect will become less and less noticeable, anyway.

3 Constructing the model for the 3D element
3.1 General

In order to be able to analyse specimens not of axially symmetric shape, a bond-slip
element as shown in Fig. 3.1 is proposed. Instead of the radial stress o, such as that
acting upon the axially symmetric element, there are now the stresses xq, xs, Oya and
0, acting upon the element, as shown at cross-section 3 in Fig. 3.1. The element com-
prises 15 nodes and a total of 45 degrees of freedom. A number of these degrees of free-
dom can in fact be dispensed with; they are indicated by the dotted arrows in Fig. 3.1. In
DIANA these are expressed, with the aid of tyings, in the other degrees of freedom. The
tyings result in the following relations:

Vx1 = Vx2;  Vx6 = Vx75  Vx11 = Vx12
Vx4 = Vx3;  Vx9 = Vxg; Vx14 = Vx13
3.1

V3=V, Vg =Vy1, V13 =M
Vya = Vyi;  Vy9 = Vg, Vy1a = Vy11
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V(Vy)

concrete elements

Fig. 3.1. Three-dimensional (3D) bond-slip element.

Uy =Us =Us = Uy
U = Uy = Uy = U7 (32)

Uy = U13= U4 = Uy
Furthermore, in analogy with equation (2.39):

1 1 1 1
Uy = Uy —3Us +3ly —3Uhs + 35U
1 1 1 1
Vx7 = Vx10 — Vx5 T 3Vx2 — 3Vx15 + 3Vx12 3.3)
1 1 1 1
Vy1 = Vy1o = Vs + M2 —Wis + %12
Finally there are the tyings:
1 . 1 .
Vx5 = §(Vx2 + an), Vx10 = Q(Vx7 +Vyg);  Viis = (Va2 + Vx13)
1
2

1
2 3.4
Vs =301 +92); V10 =306 +W7); Vs =3(M11 + Vy12) 34

which are applicable only if there are no stirrups. If stirrups are employed, a number of
the last-mentioned tyings can be discarded. As a result of the presence of a stirrup,
which can likewise be conceived as a bond-slip element, the relations o, = 0y, and
0ya = 0y N0 longer apply. This is exemplified by Fig. 3.2, which relates to, for instance,
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>V

Vy5 £ Y2 (vx2+vx3)
Vys# Y (vy1+Vy2)

Fig. 3.2. If stirrups are installed, tyings are dispensed with.

cross-section 1 in Fig. 3.1. Owing to the stirrup being present, the following tyings are

dispensed with:
Vx5 = %(sz + Vy3)
and:

Vys = 3(Vy1 + Vp0)

The extension of the axially symmetric element to the 3D element consists in replacing

equation (2.30) by:

- 17

or in abbreviated notation:
t=CAu

where C; to Cg have the same meaning as in equation (2.30).

3.2 Element stiffness matrix

40a 4C4 - 4C5 C6 C6 C6 C6
47 - 4C5 4C1 - C3 - C3 - C3 — C3
Ora G -G G 0 0 0
ow | | C -G 0 G 0 0
Oya G -G 0 0 G 0
o] L G -G 0 0 0 G|

3.5)

The generalized strains conform to the following relation, established in analogy with

equation (2.38):
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- e 1 r
7 Bll
Au B21
Avy, 0
Avxb 0
Av,y, 0
Avbe _O

or:

Au=Bu’

where, fori=1, 2, 3:

[
Bi=| 0
[N

2i= __ 4
B.— [N
3i= i 2
B4,’=’V O

r
BSi: 0
B [N

6i = __7

B, B;; 0

By, By 0

0 0 B;;

0 0 B,

0 0 0

0 0 0

0 0 0

N; N; N,

4 T4 T4

]Xi 0 0

2

0 N; N;
2 T2

N; N; 0

2 2

0 0 N

-2

(3.6)

3.7

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

In analogy with equation (2.45) the element stiffness matrix can now be written as

follows:

=1

dz
T —
BCBdZ

d¢

(3.13)

In this relation the integral sign is preceded by the factor iz instead of 27 as in equation

(2.45), i.e., there is a difference amounting to a factor 4.

On putting oy, = 0., = 0y, = 0,5 = 0, in equation (3.13), it will appear that this factor 4

is exactly compensated in the expression B’CB.
It should further be noted that the following expression holds for dz/dZ:
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dz dN1 sz dN3

— = — — 3.14

4= df z5 + az Zy0+ az Z15 ( )
With the information now available there is no problem in establishing the S¢ matrix.
Besides, the further treatment within the wider context is to be regarded as a familiar
standard problem. All the same, the following general comments are of importance

with a view to ensuring a satisfactory procedure.

3.3 Physical thickness of reinforcing bar

In the case of the axially symmetric element the physical thickness of the reinforcing
bar can simply be deducted from the dimension of the adjacent concrete element in
establishing the co-ordinates. In the model proposed here, however, this approach ruins
into difficulties, and for this reason the dimension of the bar must, in so far as the con-
crete is concerned, be neglected. Hence, for each cross-section, the nodes will have the
same x, yand z co-ordinates. Of course, the bar thickness does play a part in the analysis
by virtue of the radius r occurring in equation (3.13).

3.4 Symmetry

In the model it is possible to take advantage of symmetry, so that only a quarter of the
section need be considered, as is indicated in Fig. 3.3. The number of degrees of free-
dom is thus greatly reduced in comparison with the general case envisaged in Fig. 3.1.
The number of tyings is also much smaller. There then remains of the equations (3.1),
(3.2) and (3.4):

V=V =V == Vs =Vs=0 (3.15)
while the equations (3.3) become:

Uy = Uz — %M} + %MQ - %u5 + %u6
Vx4 = %(vx2 + vx6) (316)
Vi =3(V2 + Vse)

For the general 3D case equation (3.5.) is now simplified to:

&t
2Ua 2C4 —_ 2C5 C(, C6 7
2r |=| —2GCs 2C€, —C; —G|x|Au (3.17)
Ox C — G G 0 Av,
gy C6 - C3 0 C2 Avy

or in abbreviated form:
1=C Au

while equation (3.14) can be written as:

24



y(vy)

- —e——b——e——
|
|

Fig. 3.3. Symmetric 3D element.

dz_dN, dN, AN
&_H?ZI+TZZ3+T525

Equation (3.6) can be simplified to:

r 4 -
Eql
7 B] 0 0 U

Ug
Au B, 0 0 Avy
Avxé

AVX 0 B3 0 Avyl

where:
B r dN1 0 r dN2 0
=12 dz 2 dz
B,=[ M - M N, - N,

— N ]

|

bond slip
® element

__.%

[
I

®
|
'.

)

(3.18)

(3.19)

(3.20)
(3.21)
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B;=[—-N N, - N, N, —N; Ny ] (3.22)
Bi=[—-N N, - N, N, - N; N;] (3.23)
In determining the stiffness matrix by:
S°=;|B'CB d(4) (3.24)
A
in which relation the factor ; compensates the factors 2 in equation (3.17), it should be

borne in mind that d(4) now does not follow from equation (2.43). This is because only
a quarter of the section is considered, so that:

d(4) =;7r dx (3.25)
This yields the following expression:
F=+1 d
e 1 T, z
S¢=qir | B'CB--d¢ (3.26)
= -1 d¢

The further elaboration resulting in the overall stiffness matrix for the structure to be
analysed can be done in the usual way.

4 Some general supplementary matters

As yet, nothing has been said about three drawbacks associated with the mathematical
model of which the several variants have been discussed in the foregoing. These draw-
backs will now be indicated, and it will also be explained how they can be overcome.
They are successively:

- delimitation of the 7-A relation;

- algebraic sign of k dependent on the direction of slip;

- radial tension.

4.1 Delimitation of the 1-A relation

In the treatment of the subject so far, attention has mainly been focused on the formula-
tion of the rising branch of the 7-A relation, resulting in equation (3.5). For formulating
the second branch, which forms the upper bound of equation (3.5), a variant of this
equation may be employed, which is obtained by replacement of Au by Auy.y, as a
result of which the following relation is arrived at:

40, 4C, —4C G G G G -‘52—’
4r - 4C5 4C1 - C3 - C3 - C3 - C3 Aumax
Gwl=| C -G G 0 0 0 |x|Avy, 4.1)
o C — G 0 G 0 0 | |Avy
Tra G -G 0 0 G 0| |Av.
ol | G - o 0 0 Gl LAv,
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T T= Saumqx-kor(eq. 4-2)

T

T=Sau-kdg
(eq.2-14)

-kor

AUmax — pau

Fig. 4.1. r-A-relation for an axially symmetric element for a constant value of o,.

In order to satisfy this relation in the analysis, an iterative computational process is
required, in connection with which the difference between the stresses found in the
analysis and the stresses as determined by equation (4.1) is eliminated with so-called
unbalanced stresses. For an explanation of the procedure associated with the applica-
tion of unbalanced stresses, see for example [18].

The computational use of equation (4.1) can, for an axially symmetric element, be
illustrated in a conveniently simple manner for the special case where g, is constant.
This is shown in Fig. 4.1, for which equation (2.14) has been used; when Auy,, is €x-
ceeded, this equation is replaced by:

=S Atimax — ko, 4.2)

The model is, incidentally, still open to the objection that it is what is known as hyper-
elastic, which means that the same relation is adopted for loading and for unloading.
Since elasto-plastic behaviour is assumed for the concrete and steel themselves, ideal
interadjustment has not yet been achieved.

However, for the test specimens envisaged in the present article, the above-
mentioned objection did not cause any difficulty. This is because the reversal of loading
direction due to cracking right through the specimen occurs in the elastic range of be-
haviour, for which A u < A uy.x. Infuture, when alternating load conditions are also con-
sidered, however, this objection will certainly have to receive attention.

4.2 Algebraic sign of the rib factor k

The model as so far described is “direction-sensitive”. This is exemplified by the axially
symmetric test specimens shown in Fig. 4.2, for which, according to equation (2.14),
the relation between the radial stress ¢, and the shear stress 7 is:

r=S Au— ko, (2.14)

If the specimen is rotated through 180 degrees, so that rand Au change their signs, the
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Fig. 4.\2. Sign of k depends on the sign of Au.

rib factor kwill also have to undergo a change of sign, since the physical behaviour of the
specimen will remain unchanged. This means:

=S8 Au+ ko, 4.3)

The difference between equation (2.14) and equation (4.3) is shown in Fig. 4.3.
Evidently, the direction of the slip Au has to be known in advance in order to decide
whether —k to +k must be adopted. This is the case only if the specimen is symmetri-
cally shaped as in Fig. 4.4 and then only if there is no continuous crack at the plane of
symmetry. Hence it is even now not possible to avoid employing a procedure involving
unbalanced stresses.

This procedure could be as follows. In establishing the element stiffness matrix S®a
value k=0 is adopted. After the set of equations has been solved, the direction of the
slip in the case where k=0 is known. Now, with the aid of unbalanced stresses, the
correct magnitude of kis taken into account, in which case the direction is no longer a
problem, since the direction of Au is known. For low values of k (approx. 0.02) this
procedure works satisfactorily, but difficulties are encountered for higher values of

" k(> 0.05). This is due to the fact that the S° matrix based on k=0 is too flexible and
gives rise to over-large inital estimates of the slip, as a result of which the occurrence of
cracks in the concrete is wrongly inferred and convergence problems occur. It was found
that these problems could be solved by not only putting k= 0 in the equation which is

T-Sau
® T
.
5
' ,'\"\
’ 0
e
arctan-k arctan-k
7/ — -0
. r
/
/

/
Fig. 4.3. Difference between equation (2.14) and equation (4.3).
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Fig. 4.4. For a symmetrical specimen the sign of Au is known.

used for establishing the S® matrix, but also replacing S by S(1 + 50k), where of course k
is now not taken as zero. The S® matrix becomes stiffer in consequence. Equation
(2.30) provides an example. For establishing the S® matrix with which the stiffness of
the structure is estimated, equation (2.30) corresponding to the axially symmetric case
is replaced by:

[2F, aE, | [er
(1 4+ 2av? G
Oy r 1+ 2avy) 0 2v, p 3
T |= 0 S(1+ 50k) 0 x| Au “4.4)
E; E
o, v, @ 0 @ Av
L L r r 1 L J

4.3  Radial tension

Besides the unbalanced stresses discussed in the two preceding sections of this chapter,
unbalanced stresses are also introduced in the case where there is radial tension instead
of radial compression.

It is in fact ineconceivable that, with radial tension, a completely plain (“smooth-
surfaced”) bar would offer more resistance to slip than a deformed (“ribbed”) bar would.
Yet this is so according to equation (2.14), because for positive ¢, a lower value of ris
obtained with k> 0 than with k= C. Just as in Section 4.2, kwill have to change its sign.
Since it is moreover questionable whether the absolute magnitude of k for radial com-
pression is the same as for radial tension, it has been assumed, for the sake of simplicity,
that k=0 in the case where radial tension occurs. This means that in the axially sym-
metric model the relation represented in Fig. 4.5b isadopted instead of the original rela-
tion represented in Fig. 4.5a. Quite probably, a relation as indicated in Fig. 4.5¢ is in
even better agreement with the actual behaviour. For the time being, however, this re-
finement has not been adopted, as it is not consistent with the accuracy of the assump-
tions for the other parameters in the model. Although Fig. 4.5 is valid only for the
axially symmetric model (because o, is adopted here), it is evident that this procedure
can also be applied to the general 3D element, for which equation (2.14) then becomes:
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Fig. 4.5. Definition of k in the relation r=S Au — ko, (equation 2.14).
1= 8 At — 3keOra — $kxsOxb — iKaOya — 3K00y5 4.5)
where in principle:
kea= k= kya=kpp=k (4.6)

As soon as it appears that g, or oy, (etc.) is a tensile stress, the assumption k., = 0 or
k=0 (etc.) is introduced.

5 Possible translation of 3D into 2D model
5.1 Introduction

To enable the results obtained with the 3D bond-slip element to be employed for a 2D
analysis, a “translation” as envisaged in Fig. 5.1 will have to be carried out. Instead of
being based on the discrete reinforcing bars shown in Fig. 5.1a, the analysis will then be
based on a the steel strip shown in Fig. 5.1b and possessing the same total cross-
sectional area as the bars. In this approach the steel area is therefore “smeared out”, as it
were. In this chapter a possible procedure for such a translation will be considered, in
connection with which it is necessary to bear in mind that any translation, however,
sophisticated, will ultimately have to be verified with reference to comparative calcula-
tions in order to determine as correctly as possible the parameters adopted in performing
it. For this reason it is advisable to keep the translation as simple as possible, with as few
“translation parameters” as possible, but of course comprising the most important ones.

5.2 Derivation of formulas

The starting point of the translation is provided by:

R (5.1)
Aii=Au (5.2)
G, =0, (5.3)
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Fig. 5.1. Translation of 3D into 2D model.

In these equations the horizontal line over the symbols denotes that the variable in
question relates to the 2D model. This notation will be adopted in the following treat-
ment to distinguish these variables from those in the 3D model.

For the sake of convenience only a plain reinforcing bar will first be considered, i.e.,
the case k= 0. Starting from an equal cross-sectional area for the reinforcement in the
two models, this means that the area on which the shear stress acts is different. As Fig.
5.1 shows, for the cross-sectional area can be written:

A=inr’=ad (5.4)

so that the bond surface area per unit length is then:

r
A2D=2(1=’I 7 (55)
which is not equal to:
A3D =2rr (56)

In order to ensure that the total shear force in the two models is equal, it is therefore
necessary that:

_ 7r
r="r 6.7

Since (still for k= 0):
=S Au (5.8)
it follows with equations (5.7) and (5.2) that:

f:fafSAa (5.9)
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On furthermore defining:

~

T
a

S=—38 (5.10)

the following relation is finally obtained:
T=8 Aii (5.11)

With the defining of S the translation for the case k= 0 has been completed. Now before
the other parameters needed for the deformed bar are translated, the definition of S will
be stated in a somewhat more general form, namely:

S‘:“%WS (5.12)
so that:
f:f%" r (5.13)

in which the coefficient 4 has been introduced in order to provide rather more freedom
in effecting the translation. To start with, a value of 8 approximately equal to unity will
of course first be considered. In the final numerical verification this value can then, if
necessary, be suitably modified.

For the deformed reinforcing bar the following translational approach is found to
yield a consistent whole:

(5.14)

(5.15)

Besides the above translation of material parameters, the following relations are valid
for the displacements and stresses respectively:

APy = Ava “37’” (5.16)
ATy = Awy, ﬂan (5.17)
= Oya “67’" (5.18)
Gp= Op /%”r (5.19)
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In the 2D model the quantities Av,,, Av,,, 0y, and o,, are of course absent.
Starting from equation (3.5) and assuming that Av,, = Av,, = 0.5(Av,, + Avyp) it is
now possible, with the aid of the foregoing, to establish the following relation:

J-Balraa G — G 3G 2:Cs ‘S'r
T =|-G G —3G =G |x|Au
%a}a %é% "%é; %E; 9 Ay,
300 G —3G 0 3G 1 LAY,

or in abbreviated form: i=C Au

61=§+/;262 (S+k2 )ﬁ;[r C]ﬂTf

a
Cz=afs=c2
azzz@:kcz\/f?;‘r:c}\/?f;m
54=2/%TES+453@ 2ﬁ—E+4 2C2J3i _C4J_B_n_r
Cs = 2ki,C= 2kvsC2ﬁ _csffﬂ

- U r ”
C5=2173C2=2U3C2 JBTTTZCG J%Tj

‘:16
AJJ 9
—
—
- y
() 4

—
a“
Z(u) !7

%p

Fig. 5.2. Degrees of freedom in 2D bond-slip element.

/
r/
—
A

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

Y(Vy)
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Equation (5.20) relates to the 2D element shown in Fig. 5.2, of which the element stiff-
ness matrix will be established in the next section of this chapter.

5.3 Element stiffness matrix

The generalized strains can, with the aid of the interpolation polynomials given in equa-
tions (2.36) and (2.37), be expressed in the nodal displacements as follows:

far 1 [ 117
5 B, B, B3 0 0 0 U
Au le B22 B23 0 0 0 Uy
= X
Avy, B;; By B v
LAV, L By By Byl Lwl
or:
Aii=Bu (5.27)

where, for i=1, 2, 3:

B, = [0 ool o} (5.28)

By=[—N, N, 0] (5.29)

By, =[N, —N, 0] (5.30)

B,=[0 N, —N)] (5.31)
The stiffness matrix S¢ is now:

§°= % BB d(4) (5.32)

In which expression the factor 1/8 compensates the factors 8 in equation (5.20) and
where for an element of unit width the bond-slip surface is:

d(4)=2dz (-33)
so that:
) é=1 dz .
Se=2 B'CB > d 5.34
Bt B ar o9
where dz/d¢ is obtained from:
dx N, oN, ON; (3.35)

A TR TR T
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The following tyings are needed in the model:

! 1 1 1
Uy = Us — 35Uy + 53Uy — 3lg + 3l

5.36
Vg = Vs — 3V + 3V = 3% + 31 (3.36)
Uy =1u
U= Uy (5.37)
Uy = U7

It has been assumed here that stirrups are present, so that ,, and Av,, are not necessa-
rily equal to gy, and Av,, respectively. If there are no stirrups, these variables will indeed
have to be respectively equal, which is achieved with the following tyings:

2

Vs = %(W + VG) (5.38)
1
2

6 Constitutive equations of concrete and steel
6.1 Concrete
6.1.1 Yield criterion

The elasto-plastic material model will be used for describing the behaviour of concrete,
combined with two tension cut-off criteria (see Fig. 6.1b). These criteria are so chosen
that in the region where tension occurs in at least one direction the material will rupture
in a brittle manner, without attendant plastic phenomena. Plastic material behaviour
therefore occurs only in the compression-compression-compression region. The sim-
plest of the several elasto-plastic models available in DIANA is chosen, namely, the
Mohr-Coulomb yield criterion, which can be written as:

F=13(0, — 03) — ¢ cos 8+ 3(0, + 03) sin 60 (6.1)
where the principal stresses are in the following order:
012> 022> 03

So long as this condition is satisfied, the material behaves in an elastic manner. For the
sake of simplicity it is further assumed that the concrete is ideally elasto-plastic. For a
uniaxial state of stress this means that a bilinear g-e-diagram is adopted. If F= 0 the
material is plastic, and in that case Drucker’s postulate is applied as the yield relation-
ship. More particularly this postulate states that the vector of the plastic strain incre-
ments is perpendicular to the yield surface.

Besides the principal stresses ¢; and o; the quantities # and c also occur in equation
(6.1). The significance of this is clarified with reference to Fig. 6.1a, where 6 and care to
be regarded respectively as an angle of friction and a measure of cohesion. Together
they delimit the linearly elastic region within which Mohr’s circle, determined by ¢, and
03, must be situated.
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Fig. 6.1. Yield and tension cut-off criteria.

The yield criterion can alternatively be represented as in Fig. 6.1b, which can be con-
ceived as a section through the three-dimensional principal stress space for the case
where the middle principal stress o, is zero. The diagram is governed by a tensile stress,
which will be designated as f;3, and the compressive strength f.., for which the relation
with ¢ and 6 is:

Conversely, for given f;; and f,., ¢ and 6 are obtained from:

36

sin 0=

c=%fcc

2ccos B

“1+sin 6

2c¢ cos 6

«=1—sin 6

fcc —ﬁ3
ﬂc +fl:3

(1 —sin 6)
cos 6

(6.2)

(6.3)

(6.4)

(6.5)
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Fig. 6.2. o.-¢~diagram concrete

Fig. 6.1b has furthermore been utilized to indicate the two tension cut-off criteria,
designated as criterion 1 and criterion 2, the first of these being applicable in a case
where the compressive stresses are relatively low, while the second becomes decisive if
somewhat higher compressive stresses occur and a reduction in the tensile strength is
effected.

6.1.2 Tension cut-off criterion 1

According to this criterion the principal tensile stress ¢, can never exceed the uniaxial
tensile strength f,,. Expressed in a formula, this becomes:

F=f,—01=0 (6.6)

It is further assumed that the plane of cracking is perpendicular to the direction of o1, in
which direction the tensile strength is assumed to be zero. In combination with the yield
criterion the o-¢e-diagram indicated in Fig. 6.2 is thus obtained for a uniaxial state of
stress.

6.1.3 Tension cut-off criterion 2

This criterion becomes the deciding one for somewhat higher values of o3 and is as
follows:

o
F=f[1+2)—0,=0 6.7)

Jee
It is apparent from this formula, for example, that if the smallest principal tensile stress
is 03 = — f,.,notensionatall can be resisted. For criterion 2 the plane of cracking is like-

wise assumed to be perpendicular to the direction of o;.

6.14 Relation between f, and the auxiliary quantities f, and f;

For the relation between f, from the tension cut-off criterion 2 and f; from the Mohr-
Coulomb yield criterion the following has been adopted in the calculations:
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fi=1.01f, (6.8)

by which tension cut-off criterion 2 is decisive just a little earlier than the yield criterion,
so that - as already noted previously - plastic behaviour occurs only in the compression-
compression-compression region.

The ratio of f, to f,; is always taken as:

Jolfe=2 (6.9)

which is in reasonably good agreement with what is observed experimentally.

However, the tension cut-off criterion 2 has not been applied in the calculations de-
scribed in Section 7.2, because this criterion had, at that time, not yet been incorporated
in DIANA.

6.2 Steel

The reinforcing steel is also conceived as an ideally elasto-plastic material (Fig. 6.3).
Its elastic range is described by means of the modulus of elasticity E; and Poisson’s ratio
v,. The choice of the yield criterion is of no further importance, since the steel stress is
smaller than the yield stress in all the calculations.

7 Verification of the axially symmetric element
7.1 Verification with reference to tests by Dorr and Mehlhorn [10]
7.1.1 Data of the tests

The results of a series of tests performed by D6rr and Mehlhorn, comprising 34 axially
symmetric specimens, were used for verifying the axially symmetric element. The only
variable in that test series was the external radial pressure as summarized in Table 7.1.
The reinforcement consisted of a deformed (ribbed) bar of 16 mm diameter, steel grade
BST 42/50 IIIA. The geometric features of the specimens are shown in Fig. 7.1, while
the reinforcing bar is shown in Fig. 7.2.
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Fig. 7.1. Geometry of the specimens of Dérr and Mehlhorn.

Fig. 7.2 The reinforcing bar.

Table 7.1 External radial pressures applied in the tests performed by Do6rr and Mehlhorn

number of specimens radial pressure Q in N/mm?

0
5
10
15

2
7
11

— W AN

Of the radial pressure values stated in this table only the first four (0= 0, 5, 10 and 15
N/mm?) are considered here. For each of these values there are something like six
specimens available. It is thus possible, despite a certain amount of scatter in the meas-
ured concrete strengths, to select a series having virtually the same cylinder compres-
sive strength f.. This series is presented in Table 7.2, where also the splitting tensile
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strength f;, is given (as far as possible) and where the test No. indicated in the first
column corresponds to [10].

Table 7.2 Reference basis

radial pressure Q See S
test No. (N/mm?) (N/mm?) (N/mm?)
6-1 0 29.8 -
35-1 5 30.8 2.02
46-1 10 28.8 284
50-1 15 29.8 -

The selected series comprises tests in which the tensile force was increased mono-
tonically.

According to data supplied by Mehlhorn, the modulus of elasticity E, of the concrete
can in all cases be taken as E, = 30000 N/mm?. The calibration curves in [10] indicated a
value E, = 206000 N/mm? for the modulus of elasticity of the reinforcing steel.

As the bar was provided with 3.5 mm x 4 mm slots for accommodating strain gauges
(see Fig. 7.2), a fictitious value was adopted for the modulus of elasticity:

Anet 173 )
E, = 25 206000 = 557 x 206000 = 177000 N/mm

The associated axial steel stresses o, are therefore likewise fictitious and are referred to
the gross cross-sectional area (Agross = mz)_ With this procedure it was possible correctly
and in a simple manner to take account of the total circumference (27r) which partly
determines the resistance to slip.

7.1.2 Schematization of material properties in the analysis
and element distribution

Reinforcing steel: E, = 177000 N/mm? (fictitious)
vy =0

The yield point f, of the steel is unimportant because in all the tests the stress employed
is far below this value.

Concrete: The Mohr-Coulomb criterion is adopted, supplemented (except in Section
7.2) with two tension cut-off criteria as indicated in Fig. 6.1. The parameters which
determine these criteria are:

fie=30 N/mm?;, f,=2.1N/mm? f,=42N/mm% f;=10Llf,

From equations (6.4) and (6.5) it follows that ¢=15.65 N/mm? and 6=0.85. The
modulus of elasticity of the concrete E, will always be stated separately. In all cases the
value v.= 0.2 has been adopted for Poisson’s ratio.
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Fig. 7.3. Element distribution.

Element distribution: See Fig. 7.3. An axially symmetric element with eight nodes,
with two degrees of freedom per node, was adopted for the concrete. Four integration
points per element were applied. For the steel the axially symmetric bond-slip ele-
ment was adopted, with six nodes and a total of nine degrees of freedom and three inte-
gration points. Actually there are twelve degrees of freedom, but three of them are
taken as zero, namely, those associated with the radial displacement of the nodes on the
axis of symmetry. At the end of the test specimen, at the nodes 105, 106 and 107, the
reinforcement is detached from the concrete specimen, which is in agreement with the
manner of construction of the specimens. Symmetric considerations have been applied
in the analysis, though actually this symmetry (more particularly with regard to the
measured steel stress) was not manifest in the test results, probably because of the man-
ner of casting the specimens (vertical), which caused variation in the quality of the con-
crete along each specimen.

7.2 Verification with reference to tests without radial pressure

7.2.1 General

Verification of the axially symmetric bond-slip element was begun by considering the
case where the external radial pressure was zero (Q = 0) [5]. In this first attempt at verifi-
cation no experience at all had as yet been gained with the element. Besides, at that
stage it was not yet possible, for example, to apply the tension cut-off criterion 2 (see
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Fig. 6.1). This being so, the choice of the various parameters in the analysis was fairly
arbitrary. All the same, the results obtained give a reasonably good measure of insight
into the serviceability of the model. The test results for test 6.1 in Table 7.2 were used in
performing the verification. Contrary to the general statement in Section 7.1.2, in this
present Section only one tension cut-off criterion was considered in the analysis, i.e.,
criterion 1 as indicated in Fig. 6.1, with the bound f,, = 2.1 N/mm?. Furthermore, here a
value of f;; = 3 N/mm? has been adopted in the Mohr-Coulomb criterion, so that from
equations (6.4) and (6.5) it follows that c=4.75 N/mm? and 6 = 0.96.

7.2.2 Effect of load level
The following bond-slip parameters were adopted in the analysis:
k=0; Alpgy=o0; S=100 N/mm?®; a=1

It was furthermore assumed that E.= 10000 N/mm?.
In the analysis the tensile force applied to the test specimen was raised incrementally
as indicated in Table 7.3.

Table 7.3
fictitious corresponds to
designation tensile force steel stress g, load increment
in Fig. 7.4 (kN) (N/mm?) No. in test
(1) 30 149.2 8
) 40 198.9 9
3) 45 223.9 -
4) 48 238.8 -
(5) 48.6 241.8 ~10

The results of the calculations are presented in Fig. 7.4 and are provided with the re-
spective designations (1), (2), etc. In this analysis a continuous (through-and-through)
crack was found to develop between increments (4) and (5). Because of this the load had
to be applied cautiously in small increments. Increment (5) involved considerably more
computation time before the stop criterion was satisfied. As in all the other calculations
mentioned in the present chapter, this criterion stated that the sum of the squares of the
displacement increases within an iteration step had to be less than 10~ times the sum of
the squares of the total displacements. Since the criterion is concerned with squares
(quadratic quantities), only the magnitude, not the algebraic sign, of these displace-
ments is of importance.

The development of cracking can be investigated with the aid of Fig. 7.5. As appears
from Fig. 7.4, the calculated steel stress is in good agreement with the measured steel
stress. After the occurrence of the first continuous crack, between increments (4) and
(5), this agreement is distinctly less good, however. This is attributable to the fact that in
the test the development of cracking takes place very locally, whereas in the analysis
there was cracking in a number of places.
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Fig. 7.5. Cracking as a function of the load increment.

7.2.3 Preliminary parameter study

Besides the calculations described in the foregoing, a parameter study without radial
pressure for preliminary guidance is also described in [5]. In this study the material
properties introduced for the concrete and steel, as well as the bond-slip parameters, are
the same as before, unless any particular parameter is varied. The results of the param-
eter study are summarized in Fig. 7.6, where the (fictitious) steel stress g, at the centre
of the specimen is regarded as a function of the parameter that is varied.
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Fig. 7.6. Results of the parameter study

It is apparent from Figs. 7.6b, 7.6d and 7.6e that, in the case under investigation, for
values of the slip modulus S above 300 N/mm?® and/or for values of the rib factor k
above 0.1 the specimen behaves as if there were complete bond. In Fig. 7.6 the effect of
kis seen to be slight. This is the case for a real value of S. On the other hand, if an extre-
mely low value of S is considered (Fig. 7.6e), the effect of k is found to be very great.
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This is to be regarded as illustrating the ainount of freedom that exists in choosing the
magnitude of the various parameters, because different combinations of parameters
can result in equally good agreement between experimentally determined and calcu-
lated values.

7.3 Verification with reference to tests with radial pressure
7.3.1 General

When the research described in the previous Section had been completed, the DIANA
program had meanwhile been modified to permit the analysis also of specimens sub-
jected to external radial pressure. A number of calculations in which the results are
again compared with the experimental ones obtained by D6érr and Mehlhorn are report-
ed in [5], but now with external radial pressure acting. In the various calculations the
externally applied tensile force in the reinforcing bar is always F= 30 kN. This choice
appeared suitable because at this value of the force no through-and-through cracking of
the specimen occurred at any value of the external radial pressure Q.

7.3.2 Distribution of steel stress

For this load F=30 kN the test was analytically checked for three combinations of
bond-slip parameters. For this purpose the properties stated in Section 7.1.2 were
adopted, with E, = 25000 N/mm?, i.e., the measured E, = 30000 N/mm? was reduced
somewhat in order to take account of the decrease of the slope of the ¢,-¢.-diagram of
concrete for the higher stresses. The calculated results are compared with the experi-
mental ones in Figs. 7.7 to 7.10. In these diagrams the calculated and the measured steel
stress values have been plotted for the three combinations considered. The bond-slip
parameters in these combinations are summarized in Table 7.4.

Table 7.4 Parameter combinations investigated, as envisaged in Figs. 7.7 to 7.10

case A case B case C
(standard (same as A, except
combination) for Aumay)
, @ 3
Ci=S+k T(N/mm) 200 316 200
aF 3
C= r (N/mm”) 25750 25750 25750
aEs 3

C=k ; (N/mm”) 1000 2000 1000

Attax(mm) 0,01 0,01 P

Solfu 2 2 2

The calculated results for combination B are missing from Fig. 7.10, this being due to
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convergence problems encountered at the time. It can nevertheless be concluded that
the combinations B and C in general, for the various radial pressures, yield results that
are in reasonably good agreement with the experimental results. The exception to this
is the case considered in Fig. 7.7 (external radial pressure Q = 0), for which combination
C is found to be much too rigid. From this it must be concluded that for Q = 0 it is neces-
sary to introduce a limit for Aumay. If Atina, = 0.01 mm is adopted for this, so that com-
bination A is obtained, there is found to be much better agreement for Q = 0: combina-
tion A is then equivalent to combination B. In the cases where Q == 0 (Figs. 7.8 to 7.10),
however, the agreement for case A is poorer than for case B, so that this latter combina-
tion must be rated the best. It is to be noted that Aun,y is evidently a function of the
magnitude of the radial pressure and is therefore not constant as has been assumed for
varying Q in cases A and B.

7.3.3 Parameter study

Besides the calculations described in the foregoing, a parameter study was also carried
out in [5]. For the purpose of that study the combination A of Table 7.4 was chosen as
the standard combination.

The parameters C; and C; employed in the parameter study are defined after equation
(2.30), which definitions will for the sake of convenience be repeated here, at the same
time noting that always Cs = 0 and Cs = 0 has been adopted. Thus the following relation
between 1, g,, Au and Av exists:

T Cl — C3 Au
= X (7.1)

O - C3 C2 Av

where:
Ci=S+k>C, =8+ kC; (2.31)
E,

Cz =a 7 (2-23)
C; = kG, (2.32)

The results of the parameter study are summarized in Figs. 7.11 to 7.15. Figs. 7.11 and
712 relate to the steel stress at the centre of the specimen, while Figs. 7.13 and 7.14
relate to the steel stress at a quarter of its length. Besides these calculated stresses
plotted as functions of the parameter that was varied, the measured steel stress values
are included in these diagrams.

On the basis of the results of the parameter study the following can be stated with
regard to the effect of the parameters C; to C; on the bond-slip behaviour and the effect
of Aty and the ratio fi/fe.
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Effect of C, (= S+ ak’E,[r):

From Figs. 7.11b and 7.13b, corresponding to the steel stress at the centre and at a quar-
ter of the specimen respectively (measuring points 21 and 11 respectively), it appears
that the steel stress behaviour is entirely in conformity with expectations. With increas-
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ing magnitude of C) the slip resistance increases, as a result of which the steel stress
decreases.

Effect of C, (= akylr):

Figs. 7.11c and 7.13c show that little variation occurs over a considerable range exten-
ding from C, = 0.5E,/r to C, = E,[r. For values of C, smaller than 0.5E/r the effect on the
results becomes clearly manifest. In the case of C, = 0.2E,/r it is even found that for
radial pressure values Q = 10 and Q = 15 N/mm? no solution can be obtained, this being
due to convergence problems caused by through-and-through cracking of the specimen.
Such cracking occurs earlier according as the radial pressure becomes larger. This in
turn is bound up with the fact that the tension cut-off criterion No. 2 in Fig. 6.1b results
in lower tensile strengths for higher compressive stresses. For the radial pressure Q= 15
N/mm? there is divergence also for C, = 0.5E/r, and a supplementary analysis for
Q=15 N/mm? and G, = 0.75E/r still showed divergence to occur.
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Hence it would appear advisable not to adopt values lower than 0.5E,/rfor C;. Accord-
ing to equation (2.23), i.e., G, = aFE,/r, this is an indication that « must likewise be of
the order of magnitude of 0.5 to 1.0. It cannot, however, be more than just an indication,
since - according to equations (2.31) and (2.32) - C; and C; would also have had to vary
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along with C; in order to determine the actual correct effect of o from Figs. 7.11¢ and
7.13c.

Effect of G (= akEj[r):

Figs. 7.12a and 7.14a show the effect of C3. With increasing magnitude of C; the steel
stress is found to increase, which at first sight is a somewhat odd phenomenon. In view
of the relation C3= kC, it might be supposed that a variation of C; corresponds to a
variation of the rib factor k and that with increasing interlocking action the steel stress
should surely decrease, not increase. However, it must be considered that C; was kept
constant at 200 N/mm?®, so that according to equation (2.31), i.e., C; = S+ kC;, the
surface friction S varies along with k when C; is constant. For this reason Figs. 7.12b
and 7.14b have been compiled. In these diagrams S has been kept constant at the value
corresponding to the standard case C; = 200 N/mm?, C, = 25750 N/mm? and C;=1000
N/mm®. From C;=kC, it follows that then k= 0.0388, so that kC;=39. Hence
S=200— 39 = 161 N/mm?®. This value has been kept constant, so thatin Figs. 7.12b and
7.14b the magnitude of C; varies with that of C;.

The results represented in Figs. 7.12b and 7.14b now have a more familiar look. It is
seen that for C; = 0, in which case there is no mechanical interlocking action, the same
steel stress is obtained for all values of the radial pressure. This is in agreement with the
basic conception that S is independent of the radial stress o,.

Effect of Aup,y:

Itappears from Figs. 7.11aand 7.13a that above A v, = 0.025 mm there is little further
variation in the calculated steel stress at 3/and 3/ respectively. Having regard to the ex-
perimental results, values below 0.01 mm appear rather unlikely. Comparison of the
calculated results with the experimental ones further indicates that there must exist a
relation between the magnitude of the radial pressure and that of A u,,,,. Such a relation
will be given later on, in equation (7.2).

Effect of fp/f..:

Nearly all the analyses were performed for f;, = 2f,,. The Mohr-Coulomb criterion was
so chosen that the tension cut-off criteria were always the deciding features in the
tension-tension and tension-compression regions. The choice £, = 2f,, was based on
the consideration that premature development of primary cracking in the specimens at
somewhat higher values of the radial pressure should be prevented. Besides this choice
Ji2=2f«, the analysis for the standard case was also performed with f, = 1.5f,, and
Jio=fu. In both these last-mentioned cases the assumption f;; = 1.01f,, was again made
for the Mohr-Coulomb criterion, so that from equations (6.4) and (6.5):

fa=15f,—>c=49 N/mm?; 6=0.94
fo=fu —c=40N/mm? #=1.05

So far as possible, the results are given in Fig. 7.15. For f,, = 1.5f,, the specimen cracked
through-and-through at Q=15 N/mm?. For f, = f,, this occurred already at Q=5
N/mm?. Since such cracking did not take place in the tests, it must be concluded that
Jfro=2f., is the best choice for the analysis of this case.
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734 Provisional conclusions and recommendations

The bond-slip element developed here would appear to be a good approximation foran
axially symmetric test specimen. It is found possible to obtain reasonably close agree-
ment with the actual behaviour, while few problems arising from computation time and
rate of convergence are encountered. This conclusion remains valid up to instant of
through-and-through cracking. When a specimen is at the point of cracking through, the
further analysis will have to proceed very cautiously and will involve much computation
time. If this requirement is ignored, it may well occur that during the iteration proce-
dure the specimen will wrongly appear to develop cracks over a very extensive region.
Of course, this problem can be avoided by the assumption of a certain amount of scatter
in the material properties throughout the specimen or by the deliberate choice of a low
concrete strength in the region where the crack is expected to form.

On the basis of the research described so far, in [5] the following recommendations
were made as to the numerical values of the various bond-slip parameters:

S§=100—150 N/mm>; k=0.05-0.1; a=0.5—1; Aupy=0.01 mm

The recommended value for k was obtained by applying the relation k= C;/C, to the
values of C, and C; given in Table 7.4 for the cases A and B employed in the research.
The magnitude of S was determined from S = C, — kC;, while that of aisas explained in
Section 7.3.3. The value recommended for Aun,x is probably too low.

In fact, having regard to results published in the literature, a much more realistic
value to be adopted would be A= 0.025 mm. In this context, see the r-A-relation in
Fig. 7.16 which Wahla recommends (consider, for example, Fig. B16 in [11]). The mag-
nitude of S is 200 N/mm? in that case, which is not at variance with the results that have
so far been obtained, It was accordingly decided to adopt the following values for the
purpose of the further investigations:

S =200 N/mm?®
k =0.05-0.1
a =1

Atmax = 0.025 mm

| Tmax = 5N/mnf

—_—

|
|
|
|
|

arctan SIS= 200 N/mm®

8Umax =0025mm
— au

Fig. 7.16. r1-A-relation recommended by Wahla [11].
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Fig. 7.17. r-A-relation according to Dorr [20].

The choice of @=1 was made for the sake of simplicity.

With regard to the magnitude of Aup,,, the following can be said. As stated in Section
2.1, Auy.y is to be regarded as dependent on the magnitude of the radial stress. This can
also be inferred from the r-A-relations as a function of the external radial pressure as
deduced by Dorr from his measurements and reported in his thesis [20]. The 7-A-
relations found by Dorr have been reproduced in Fig. 7.17a. In the same diagram are
indicated the relations resulting from the recommendations S = 200 N/mm?, k= 0.05,
a=1and Aum,x= 0.025 mm for the external radial pressures Q = 0 and Q= 15 N/mm?.

The recommendations for kand S are found to be quite satisfactory in both cases. The
slope and the initial point of the rising branches are suitably described. Also the magni-
tude of Aumay in the case where Q = 0 appears to be a suitable choice. For 0> 0, how-
ever, Aum,x (and therefore r,,x) is not satisfactory.

Hence the magnitude of Aup,, was introduced as dependent upon the magnitude of
o,. For this purpose the ratio between the external radial pressure Q and the radial pres-
sure g, (compressive stress) on the bar itself, as determined by Dorr for the specimens

considered, was adopted, namely, g,= — 1.5Q.
With the aid of this information the following recommendation for Au,,., can be

derived:
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Autax = 0.025

)
1+1.5|—] { mm (7.2)
_f;‘t‘
With the aid of this amended recommendation for Auny,y the relation represented in
Fig. 7.17b is obtained. Now for all values of the radial pressure there is good agreement
with the results of Dorr.

Finally, for the extension to the 3D element the recommendation stated in equation
(7.2) can be written as:

Autmax = 0.025 (7.3)

Oxa+ Oxp+ Opat+ ayb)z}

mm
4fce

Equation (7.2) yields good results if g, is negative, i.e., is indeed a compressive stress.

In the opposite case, i.e., where o, is a tensile stress, this equation will obviously not be
satisfactory, and the following approximation would then appear to be more suitable:

1+1.5(

Aty = 0.025 (1 - 5’1) mm (1.4)
Jor
which, for the general 3D case, can be written as follows:

(1.5)

Oxa+ Oxp+ Opa + ay,,)

4f i

Equation (7.4) is applicable if ¢,>0, while equation (7.5) should be applied if
Oxa+ Oxp+ Oy + 0y > 0.

In the above mathematical expressions Aupy,y varies linearly from 0.025 mm for the
case g, = 0to 0 for the case g, = f,,. In this latter case it is in fact logical to assume that no
further slip resistance can be developed when the tensile strength of the concrete has
been reached.

It should, finally, be borne in mind that ¢, = 0 not only forms the boundary between
the ranges of application of equation (7.2) and (7.4), and between those of equations
(7.3) and (7.5), but also decides whether k=0 should be adopted, as discussed in
Section 4.3.

Amax = 0.025 (1 -

8 Verification of the symmetric variant of the 3D element
8.1 Introduction

When the analysis of the axially symmetric bond-slip element had yielded deeper in-
sight into the various parameters, the research was continued. Attention was not at once
switched to the general 3D bond-slip element. Instead, the symmetric variant thereof
was considered. The equations for this variant have been given in Chapter 3.
Verification was done with reference to a test from a TNO-IBBC series of three tests on
prisms with a central reinforcing bar [4], as shown schematically in Fig. 8.1. The test
with the 12 mm diameter bar was adopted for the purpose of this verification. The meas-
ured values for the modulus of elasticity and the prism compressive strength were
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Fig. 8.1. Test series of TNO-IBBC [4].

E.= 28000 N/mm?® and f,. = 29.6 N/mm? respectively. The cube splitting strength was
Sp=33 N/mm?, and the modulus of elasticity of the steel was E,=205600 N/mm>.

8.2 Schematization of material properties in the analysis and element distribution
Reinforcing steel:

E,= 205600 N/mm?
v, =0

The yield point of the reinforcement plays no part in the calculations.
Concrete:

E.= 28000 N/mm?
foe=129.6 N/mm?>
ve =0.2

The Mohr-Coulomb yield criterion was adopted, supplemented by two tension cut-off
criteria, as indicated in Fig. 6.1. The tensile strength was taken as f,,= 0.7 x 3.3 = 2.1
N/mm? because a minimum, not an average, value for the strength has to be used in the
calculations. As before, the choice f;, = 2f,, was made, so that f,, = 4.2 N/mm?. Accord-
ing to equations (6.4) and (6.5) with the assumption f;; = 1.01f;, this meant: ¢=5.9
N/mm? and 6= 0.82.

Element distribution: See Fig. 8.2. The mathematical model comprises 20 volume ele-
ments for the concrete and five slip elements. Eight integration points are used in the
concrete element, three in the slip element. The analysis makes use not only of sym-
metry with respect to the X-axis and Y-axis, but also of symmetry with respect to the
XOY-plane. In the analysis a restraint (condition of fixity) is assumed at this plane,
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Fig. 8.2. Geometry of the specimen.

while a tensile force acts on the reinforcing bar at the free end. In order to enable the
through-and-through cracking of the specimen at its restraint section to occur as well as
possible in the analysis, the finite element network was chosen as shown in Fig. 8.2. This
choice, which on account of the computation time and the available storage capacity
could not be very fine-meshed, is in part influenced by the location of the slip element.

8.3 Bond-slip parameters
In the verification procedure the following bond-slip parameters were adopted:
S=200 N/mm®;, a=1; k=0.05—0.1; Aumuy=0.025 mm

The recommended value for kat first seemed to be somewhat on the low side. In order
to obtain a sounder basis for the recommendation, a further investigation into this
aspect was undertaken. For the purpose of that numerical investigation the magnitude
of the rib factor k was varied while S, @ and Au,,, were kept constant at the above-

" mentioned values. More particularly, the following values were adopted for : 0, 0.05, 0.1

and 0.25. The stage at which the specimen had not yet cracked through was investigated.
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Fig. 8.4. Comparison of calculated results and experimental results for specimen with rein-
forcement @12 from [4].

The results of the analysis are presented in Fig. 8.3, which is to be conceived as a detail
of the first branch in Fig. 8.4, where the steel stress has been plotted as a function of the
total elongation of the steel (A,) and of the total elongation of the concrete (A.). It
appears that in Fig. 8.4 the cases corresponding to the values 0, 0.05 and 0.1 for k vir-
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tually coincide with one another, whereas the case k= 0.25 is somewhat too rigid. Of
greater importance with regard to the choice of k, however, is the level of load at which
the specimen cracks through. For k=0 this occurs at too high a load, whereas for
k=0.25 a load is found which is too low in comparison with the experimental value.
The cases k= 0.05 and k= 0.1 do indeed both lead to a satisfactory load level, but the
differences between them are hardly perceptible, so that no preference for one or the
other of these two cases can be stated.

8.4 Comparison of numerical and experimental results

The calculated results are compared with the experimental ones in Fig. 8.4, where the
experimental values have been taken from Figs. 21a and 21b of [4]. In Fig. 8.4a the steel
stress at the free end has been plotted as a function of the total steel elongation Aj;.
Here, just as in [4], “total” refers to half the length of the specimen, i.e., /=300 mm. In
Fig. 8.4b the same steel stress has been plotted as a function of the elongation A, of the
concrete. In the diagram the point A corresponds to the load at which a through-and-
through crack occurs at the restrained cross-section. When that happens, the actual
specimen is halved, as it were. At point B there again occurs a through-and-through
crack in the analysis, while point C relates to a fully developed crack pattern. In this con-
text it is to be noted that in the analysis no states of equilibrium were found between
point B and point C. Only after prolonged iteration, during which cracks were formed in
all the elements, was equilibrium attained at point C. In the actual test the cracks devel-
oped in the manner deducible from Fig. 8.4a by considering the positions where two
points representing measured values are located one above the other.

8.5 Stress distribution

For the points A, B and C in Fig. 8.4 the distribution of the shear stress and the axial
steel stress, for k=0.05 and k= 0.1 respectively, is represented in Figs. 8.5 and 8.6. For
the points A and C in Fig. 8.4 the behaviour of the radial pressure on the reinforcing bar
is also given. For case B this has been omitted because, in so far as the radial stres-
ses were concerned, there were still too large unbalanced stresses present, this being
due to the iteration not having been continued to a sufficiently advanced stage. This
phenomenon was detected only some considerable time after the calculations had been
performed, and it was then not considered justified to repeat all the calculations just for
the sake of two diagrams, as the main aspects of the interaction of the forces involved
would hardly be affected by this. This is more particularly because for k= 0.1 the shear
stress is affected by only 1 of the error in the radial stress, while for k= 0.05 this propor-
tion is only .

8.6 Conclusions

The chosen bond-slip parameters turn out to be a suitable choice for the test on a pris-
matic specimen under tensile load, as considered here. Therefore the parameters
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Fig. 8.5. Stress distribution along bar k= 0.05.

employed still appeared to provide a reasonably satisfactory point of departure for
further research:

S =200 N/mm°®
k =0.05-0.1
a =1

Atmax = 0.025 mm
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Fig. 8.6. Stress distribution along bar k=0.1.

9 Experiments for the general 3D element
9.1 Description of test specimens

For the purpose of verifying the general 3D bond-slip model, two specimens were ex-
perimentally investigated by TNO-IBBC [9]. The shape of the specimens was so chosen
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that they could be said to simulate a freely supported end of a beam or slab. The aim was
to test a structural detail in which the co-operation of concrete and steel would play an
essential part. The choice of the model envisaged here was furthermore based on the
consideration that, although the interaction of the forces involved was fairly complex,
some rational insight into its behaviour was nevertheless available thanks to what had
been learnt from earlier tests. This being so, it was felt that the experimental and nu-
merical results obtained could be judged in a justifiable manner. To what extent the
chosen specimens conformed to, or deviated from, the actual conditions in the end
portion of a beam or slab was in fact not particularly relevant within the context of this
research. After all, so long as such specimens were used both for the experimental and
for the numerical investigations, comparisons between one set of results and the other
would remain valid.

The specimens investigated are shown in Fig. 9.1. The overall (external) dimensions
of both were 250 mm x 450 mm x 950 mm. Each specimen comprised two 425 mm long
parts, symmetrically disposed in relation to each other, with an extension of 100 mm on
one side. This extension was intended to ensure that failure would occur in the other
part of the specimen, which was the part where all the measurements were performed.
Strictly speaking, only the shorter part, with a length of 425 mm, should be regarded as
the actual specimen (it is the part on the right in Figs. 9.1b and 9.1c).

load

IERE
!
! —+—beam or slab
L—_ :g:; — —=1—rreinforcement
i
! bearing

t t hd cracks

a) analogy with
beam or slab end

200 /5, « 200 | 5
£4 4 ch ch
o
L O
ISRt / N\
[ — ———————————— el el — | [ smeemm— it —— N
w0
OO0, 850 =, W00, 850 =,
[ s n i ——— Py S— = l | peeividey sem—
=== ——— === -—==
[ s—— o ———— i s— = o= | I ===
|125 sle 300 » J25 , J00,1¢ 200
b) specimen nr.1 c) specimen nr2
Fig. 9.1. Choice and shape of the specimens.
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The reason for adopting different shapes for the two specimens was bound up with
the need for measuring the strains in the concrete in the vicinity of the bars and, further-
more, with the cracking expected to occur in a structural detail of this kind. For want ofa
practical and accurate method of carrying out the measurements in the interior of the
concrete, the solution adopted for the problem was based on the following considera-
tions.

With a bearing and loading arrangement as shown in Fig. 9.1a, bond stresses will
develop only after one or more cracks have occurred. After a crack has been formed, the
behaviour of the part nearest the bearing becomes substantially independent of the
concrete located on the other side of the crack. Hence if this concrete were omitted from
a test specimen, the behaviour of the specimen would be approximately unchanged,
and the exposed “crack face” would thus also become accessible for measuring the local
strains in the concrete.

In specimen No. 1 the vertical surface directly beside the load application strip con-
stitutes such a “crack face”, on one side of which the concrete can be conceived as
having been omitted. As this has been done only over a depth of 150 mm, the specimen
itself remains at liberty to develop a larger depth of cracking.

It is known from experience that, after a crack has developed beside the load applica-
tion strip, more cracks (may) occur between that crack and the bearing when the load is
further increased. The situation that then arises was simulated in specimen No. 2, in
which the vertical surface extending up to the reinforcement and continuing as the in-
clined surface towards the load application strip represented such a newly formed
“crack face”, on one side of which the concrete had been omitted.

Each test specimen contained three 16 mm diameter reinforcing bars installed at a
distance ¢+ 0.50 = 50 mm from the surface of the concrete. The bars were uniformly
distributed across the width of each specimen and were spaced at 150 mm centres. The
total anchorage length per bar was 300 mm in specimen No. 1 and 200 mm in specimen
No. 2.

9.2 Material data

The 16 mm diameter reinforcing bars were of grade FeB 400 HW NR, with a modulus of
elasticity E;=0.21 x 10° N/mm?.

At the time of testing specimen No. 1 the cube strength of the concrete was 33
N/mm? In the case of specimen No. 2 the cube strength was 41 N/mm? when this speci-
men was tested.

9.3  Steel strain measurements

For the purpose of strain measurements the reinforcing bars were provided in the longi-
tudinal direction with grooves (2.5 mm wide, 2 mm deep) in which the strain gauges
were glued. There were two of these grooves per bar, located diametrically opposite
each other. In Fig. 9.2 this arrangement is shown in a photograph and also in a diagram
representing a cross-section through a bar prepared in this way.
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Z:_ level of centre

of reinforcement
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Fig. 9.2. Example of reinforcement employed, with attached strain gauges.
a. pattern of deformations on bar, and strain gauge terminal
b. detail of groove containing a strain gauge
c. cross-section of bar showing position of grooves and strain gauges

Although in each specimen the strains were measured only on two of the three bars,
for the sake of symmetry in the transverse direction the third bar (without strain gauges)
was likewise provided with grooves. The cross-sectional area of all the bars was thus
reduced by 5%. The grooves were carefully filled with glue, so as to restore the original
perimeter of the bars. These were so positioned in the formwork that all the grooves
were in the same plane (the horizontal plane through the centre-line of the reinforce-
ment).

In principle, each load increment aimed at achieving a stress increase of 40 N/mm? in
the non-embedded part of the centre bar. At halfthe value of the anticipated failure load
a “loading loop” was interposed (load removal and reloading). After this, incremental
increase of the load was continued until the specimen failed. As appears from the dia-
grams, this principle was not in fact closely conformed to: especially at high values of
the load, at which the steel strains in the two bars in which they were measured differed
rather considerably, a subsequent increment was chosen arbitrarily.

9.4 Results of the measurements

A number of results of measurements, which will be further considered, have been plot-
ted in Figs. 9.3 to 9.8:
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Steel strains in the non-embedded lengths as a function of load; specimen No. 1.

- Figs. 9.3 and 9.4 show the steel strains in the reinforcing bars, measured in the non-

embedded parts, as a function of the load F applied to the specimen.

- Figs. 9.5 and 9.6 show the distribution of the steel strains over the embedded lengths
of the bars in the specimen.
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Fig. 9.4. Steel strains in the non-embedded lengths as a function of load; specimen No. 2.

- The difference between the displacement of a bar relative to the plane of cracking of
the specimen and the displacement of the concrete directly beside it has been plotted
against the local steel strain in Figs. 9.7 and 9.8.

Having regard to the accurately centred loading applied to the specimens, the dif-
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Fig. 9.5. Distribution of steel strains in specimen No. 1.

ference in behaviour of the centre bar and the side bar under relatively large load (as
appears from Figs. 9.3 and 9.4) can be attributed only to the lower degree of lateral
restraint of the side bar by the concrete and to the scatter in the strength. From the point
of view of restraint the concrete around the side bar could be expected to split and
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Fig. 9.6. Distribution of steel strains in specimen No. 2.

loosenits grip (so that the stress in the bar would decrease) more than around the centre
bar. Yet in specimen No. 2 the very opposite occurred, and it is likely that the scatter
played an important part in this case. The possible effect of shrinkage stresses in the
concrete cannot be ruled out either.
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The measured steel strains plotted in Figs. 9.5 and 9.6 fairly accurately represent the
stress distribution in the bar along its embedded length. Any abrupt major increase in
stress along the bar is due to the formation of (macro) cracks in the concrete, after which
the steel strains in the cracked-off part show a more erratic behaviour.

The relative displacement of a reinforcing bar with respect to the adjacent concrete
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Fig. 9.8. Relative displacement of reinforcing bar/concrete as a function of local steel strain;
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(see Figs. 9.7 and 9.8) should not be conceived as actual slip between steel and concrete.
The relevant measuring points on the concrete were located at 12.5 mm from the centre-
line of the bar or at 4.5 mm from the theoretical “shell” of the bar. The actual slip, if any,
was certainly less than the values indicated in Figs. 9.7 and 9.8. Finally in the Figs. 9.9
and 9.10 the specimens No. 1 and No. 2 are shown after failure.
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Fig. 9.10. Specimen No. 2 after failure.

72



10 Verification of the general 3D element
10.1 Mathematical model

The experimental results obtained with specimen No. 1, as reported in Chapter 9, were
used for verifying the general 3D element. On the basis of symmetry considerations
only a portion of the actual model shown in Fig. 9.1b was analysed for the present pur-
pose, namely, the portion represented by full lines in Fig. 10.1. In this case 57 volume
elements, 12 slips elements (3D) and also two bar elements were used, the two last-
mentioned taking account of the reinforcement protruding from the specimen.

The manner of loading and the schematization of the boundary conditions are shown
in Fig. 10.2. Of course, the load considered here is half the load F applied to the actual
specimen. The load which was applied to the top of the specimen, on the second row of
elements (see Fig. 10.1), was conceived as uniformly distributed. It was introduced into
the analysis as an equivalent set of nodal forces (see Fig. 10.3).

— |5 28
A2 - H 2%
’<\ . hh 25
for 6g | > . ' 1 ’.
see table 10.1 .

\>_ 3
. ,‘<>

K4
%

«
£

e—x=0

Fig. 10.1. Geometry and distribution of elements.
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Fig. 10.2. Manner of loading and boundary conditions.
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Fig. 10.3. Equivalent nodal forces.

10.2 Material properties adopted in the analysis

At the time of beginning the analysis the precise values of the material properties of the
specimen were not yet known. However, the values that were adopted for the purpose
were in reasonably good agreement with the measured cube strength and the values
derivable from this.

More particularly, the following values for the concrete were introduced:
- compressive strength f,. = 29.6 N/mm?

- modulus of elasticity E,= 30000 N/mm?

- uniaxial tensile strength £, = 2.3 N/mm?

- Poisson’s ratio v,=0.2
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Table 10.1 Calculation procedure

number norm of the

F of displacement Va2 V,42 04

increment  factor (kN) iterations  increases (mm) (mm) (N/mm?)
R-01 0.662 0 0.4680 10" 0.0859 -0.141 49.8
R-02 0.662 5 0.1497 107* 0.0907 -0.148 53.4
R-03 1.0 72 5 0.9409 10°? 0.170 -0.258 109
R-04 1.5 5 0.1156 10~ 0.283 -0.419 180
R-05 1.5 5 0.5478 1072 0.310 -0.452 188
R-06 1.5 108 10 0.2437 1072 0.344 -0.495 192
R-07 2.0 10 0.1315 107" 0.453 -0.653 250
R-08 2.0 10 0.8174 1072 0.513 -0.728 258
R-09 2.0 10 0.6439 1072 0.561 -0.793 260
R-10 2.0 10 0.4771 1072 0.601 -0.847 259
R-11 2.0 144 10 0.4099 1072 0.637 -0.839 261
R-12 2.2 10 0.6239 1072 0.715 -1.00 264
R-13 2.2 10 0.5157 1072 0.754 -1.05 269
R-14 2.2 10 0.4791 1072 0.781 -1.09 272
R-15 2.2 158.4 10 0.4285 1072 0.808 -1.13 274
R-16 2.4 10 0.6685 1072 0.879 -1.22 313
R-17 2.4 10 0.5917 1072 0.914 -1.27 314
R-18 2.4 10 0.5498 1072 0.947 -1.31 316
R-19 2.4 10 0.5617 107? 0.980 -1.35 317
R-20 2.4 10 0.5606 1072 1.01 -1.39 318
R-21 2.4 10 0.5633 107? 1.05 -1.44 319
R-22 2.4 10 0.5653 1072 1.08 -1.48 320
R-23 2.4 10 0.5662 1072 1.12 -1.52 320
R-24 2.4 10 0.5576 1072 1.15 -1.56 321
R-25 2.4 1728 10 0.5557 107? 1.19 -1.60 321
R-26 2.5 10 0.6925 1072 1.24 -1.67 330
R-27 2.5 10 0.6496 1072 1.28 -1.72 334
R-28 2.5 10 0.6375 107? 1.32 -1.76 335
R-29 2.6 1872 10 0.7676 107? 1.38 -1.84 347
R-30 2.7 10 0.9047 107? 1.45 -1.92 360
R-31 2.8 10 0.1016 107! 1.42 -2.01 373
R-32 2.9 10 0.1166 107! 1.60 -2.11 385
R-33 3.0 216 10 0.1257 107" 1.68 -2.21 398

It was again assumed that the behaviour of the concrete could be described in terms of
the Mohr-Coulomb yield criterion, without hardening, supplemented by two tension
cut-off criteria (see Fig. 6.1.). The parameters that determine this model are f.., f.;, and
Jro and f;3. The tensile strength f,, was taken as 2.3 N/mm?; for f,, twice this value was
assumed, i.e., f;, = 4.6 N/mm? while f,; was taken as equal to 1.01f,. This conforms to
the results of verification calculations previously carried out.
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With equations (6.4) and (6.5) these values lead to 6 =0.82 for the angle of internal
friction and ¢ = 5.9 N/mm? for the cohesion. The modulus of elasticity of the reinforcing
steel was E; = 205600 N/mmz, while Poisson’s ratio for the steel was taken as zero.

The following values were adopted for the further parameters determining the bond-
slip behaviour:

S=200 N/mm?®; k=0.05; Autma=0.025 mm

10.3  Calculation procedure

In a non-linear analysis with DIANA the procedure comprises first performing a linear
elastic analysis. Next, it is investigated by what factor the applied load can be multiplied
50 as just not to bring about any non-linear phenomena such as yielding and cracking.
This factor was found to be 0.662. From Fig. 10.3 it is apparent that, at that instant, a
load equal to 0.662 x 36 = 23.83 kN was acting on the “half” specimen. The correspond-
ing load on the actual specimen was twice as large, i.e., F=47.66 kN. This load caused
incipient cracking in an element located beside the side bar (the element in question is
shown hatched in Fig. 10.1). The load was then increased incrementally; several itera-
tions had to be performed per increment. These increments are listed in Table 10.1,
which states the norm of the displacements increases along with other information (in-
crement number, load factor, total load, number of iterations). By “norm” is understood
the sum of the squares (quadratic values). It is to be noted, too, that the increment num-
bers are designated by R-01, R-02, etc. to distinguish them from the load increments
applied in the test, the latter being designated (where necessary) by P-01, P-02, etc. in
Chapter 9. The x and z displacements of node 42 (its location is indicated in Fig. 10.1)
have likewise been given in Table 10.1 (columns vy4, and v,4), as is also the steel stress
in the centre bar portion protruding outside the specimen.

It can be inferred from the table that the rate of convergence is not great - probably
because in the version of DIANA employed in this research, namely, DIANA NL03
(constant stiffness matrix method), during iteration the unbalanced stresses are elim-
inated with the original elastic stiffness matrix and not, as in the subsequent series
DIANA NL04 and NLOS5, with a tangent stiffness (Newton Raphson or modified New-
ton Raphson). It further emerges from the table that, broadly speaking, the load was in-
creased only when the norm of the displacements increases was less than 0.5 x 10~ 2 At
the higher load values, however, about twice this value of the norm was accepted, i.e.,
1.0x 1072

The analysis was stopped at increment R-33 because in the mathematical model it
had been assumed that the yield point of the reinforcement was f, = 400 N/mm2, astress
that was almost attained at that increment (g, = 398 N/mm?), so that theoretically there
was no point in further increasing the load.

10.4  Results of the analysis

More particularly those calculated results will be reported which are comparable with
the measured results given in Chapter 9, especially concerning specimen No. 1.
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Fig. 10.4. Calculated distribution of steel strain in centre bar.

First, the distribution of the steel strain will be considered (see Figs. 10.4 and 10.5).
The load increments “R” in the analysis which are directly comparable with the incre-
ments “P” in Chapter 9 are given in Table 10.2.
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Incidentally, the distribution represented in Figs. 10.4 and 10.5 has been somewhat styl-

ized. For increments R-03, R-06 and R-11 the actual calculated result is indicated by a
dotted line.

Discontinuities occur at the edges of the elements. The full (continuous) line is
obtained by adopting in each case the middle value per element. The occurrence of dis-
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Table 10.2 Summary of the comparable load increments

load increment load F load increment load F
Fig. test (kN) calculation (kN)
10.12 P-03 60.5 R-03 72
P-04 80.1
10.13 P-05 99.4 R-06 108
10.14 P-11 139 R-11 144
10.15 P-12 173.1 R-25 172.8
P-13 170.4
10.16 P-14 210 R-33 216
7 R -
o g R-31 [/ / )4
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Fig. 10.6. Shear stress distribution.
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continuities in the steel strain curves is due to the fact that for these strains a linear
behaviour follows from the assumed second-degree displacement field, while a linear
displacement field was adopted also for the slip. Since the shear stress associated with
slip should be the derivative of the steel stress, discontinuities are bound to occur.

In Figs. 10.6 and 10.7, respectively, the shear stress distribution and the radial pres-
sure distribution along the reinforcement are represented. Since it was found in the cal-
culations that the stresses perpendicular to the reinforcing bar always conformed to
Oxa = Oxp = Oy = Oy, ONly one stress has been indicated, again designated as ¢,. This
phenomenon of equal stresses, which merits closer attention in future investigations, is
due to the fact that the calculations always yielded Avy, = Avy,= Avy,= Av,,=0, so
that with equation (3.5) it is found that g, = 0y = 0y = 0y = Cse,r[2 — C5 Au.

The stresses in Figs. 10.6 and 10.7 are not to be compared with measured results.
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They have been indicated only in order to give insight into the interaction of the forces
involved. Thus itis seen that, for increment R-03, the shear stress and radial stress in the
diagrams start at a high value and rapidly die away (from left to right). For increment
R-11, and higher, the behaviour is just the reverse. It is seen how the shear stress increa-
ses rapidly up to the maximum value obtained from the r-A-relation. The transition is at
increment R-06, this being due to cracking of the specimen.

Figs. 10.8 to 10.10 have been compiled with a view of giving some indication of the
calculated cracking behaviour. These diagrams relate to the end, top and lateral faces,
the locations of which are further explained in the relevant diagrams. The cracks
shown in them are associated with the integration points nearest to the face concerned.
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Fig. 10.8. Crack development on end face.
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10.5 Comparison with experimental results

For a number of load levels which occurred both in the test and in the analysis (given in
Table 10.2) some diagrams have been compiled in which the results obtained by cal-
culation are compared with the experimental ones (Figs. 10.12 to 10.16). Besides the

calculated results for the standard case (i.e., with the properties stated in Section 10.2),
those for two variants are also represented in these diagrams. In the first variant a value
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of 400 N/mm? has been adopted for S instead of 200 N/mm? as in the standard case. In
the second, the concrete tensile strength £, in the specimen proper (see Fig. 10.11) has
been increased from 2.3 N/mm? to 6 N/mm?.

The first thing that strikes one in Figs. 10.12 and 10.13 is that increasing the mag-
nitude of S from 200 N/mm? to 400 N/mm?® makes no appreciable difference. For this
reason the curve for S= 400 N/mm?® has not been calculated for Figs. 10.15 and 10.16.
On the other hand, the tensile strength has a much greater effect on the interaction of
forces in the specimens. The tensile strength value introduced into the analysis deter-
mines the transition from a concave to a convex shape of the curves. In the test the tran-
sition was between P-12 and P-13, as appears from Fig. 9.5, whereas in the calculation
this transition for the standard case (for which f,,= 2.3 N/mm?) occurs much earlier:
between R-06 and R-11 according to Fig. 10.4.

When the tensile strength is raised to the extreme value f,, = 6 N/mm?, this transition
no longer occurs anywhere. The transition from concave to convex is a direct function of
the tensile strength upon which the through-and-through cracking of the specimen
depends, this cracking being followed by a change in the distribution of forces in the
specimen.
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It is also possible to convey some idea of the agreement between the calculated slip
(conceived as true slip) and the relative displacement v as deduced from the tests with
the aid of the following definitions:

edge bar: v= 0.5(V29 + V31) — V30 (101)
centre bar: v=0.5(vys+ v27) — V26 (10.2)

where vy9 denotes the displacement of measuring point 29 in X-direction, etc. See Fig.
9.7 relating to specimen No. 1, in which, besides the experimental results, the calcu-
lated results are also indicated for f,,= 2.3 N/mm? and f,, = 6 N/mm? in so far as the slip
at the plane of cracking is concerned. The curve corresponding to the results of the
experiments is located between the two calculated curves.

That f,,=2.3 N/mm? represents a reasonable choice is moreover apparent from Fig.
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9.3. It is found that for this value of f,, the calculated strains of the reinforcing bars at the
plane of cracking are in agreement with the measured strains. For f,,= 6 N/mm? the
agreement is much poorer.

It is evident from what has been stated here that the tensile strength of the concrete
plays an important part in the bond-slip model. Conceivably, the tensile strength of the
concrete in the immediate vicinity of the reinforcing bar must have a different value
from that in other parts of the concrete. However, having regard to the fairly coarse-
meshed element distribution in the numerical model employed in this research, it was
not possible to make such a distinction in tensile strength.

In future investigations, when available computer time and storage capacity will
become less and less an impeding factor, this possibly essential distinction in tensile
strength must not be lost sight of.
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Conclusions

In this publication a numerical model has been developed for the bond-slip relation
between concrete and steel which takes account both of the slip resistance (by means
of the slip modulus §) and of the mechanical interlocking (by means of a rib factor k).
See Fig. 2.3. For the boundary layer thickness a coefficient a is used. The slip resist-
ance is bounded with the aid of a limiting value for the slip (Aunax) Which is depen-
dent on the radial stress o,. The model is to be regarded as a generalization of the fre-
quently adopted models comprising springs (Fig. 1.5). The numerical model is de-
scribed with equation (2.30) for the axially symmetric case and with equation (4.1) for
the 3D model. In Section 5 a translation of the 3D model into a 2D model has been
proposed.

Verification of the model with reference to the measured behaviour results in the
following recommendation for the principal parameters:

slip modulus S = 200N/mm?
rib factor k =0.05 for 0, < 0 (compression)
k =0 0,> 0 (tension)
layer thickness effect « =1
limiting slip Aoy = 0.025{1 + 1.5(0,/f..)*} mm 0,<0
Atiax =0.025{1 — ¢,/f,,} mm 0,>0

It is to be noted that the interrelation of the parameters requires further research,
more particularly as regards the correct apportionment between mechanical inter-
locking and slip resistance.

The cracking and therefore the tensile strength of the concrete plays a very important
part in the interaction of forces. It would appear that this effect can be correctly taken
into account only by assumingaround the bond-slip element the presence of a bound-
ary layer possessing a suitably adjusted concrete tensile strength. Variation of the
layer thickness coefficient as employed here was in fact found to have little effect on
the cracking behaviour.

The numerical model for describing the behaviour of the concrete in general requires
further investigation with a view to obtaining a clear insight into the question
whether the actual behaviour can be described with the aid of an elasto-plastic model.
Other questions to be considered in this context are what yield criterion and what
tension cut-off criteria are most suitable. In the study reported here, good results
were obtained with a Mohr-Coulomb yield criterion, without hardening, in combina-
tion with two tension cut-off criteria. These last-mentioned criteria were so chosen
that plastic behaviour could occur only in the compression-compression-compres-
sionregion. In the other regions of the stress space the material would undergo brittle
fracture if a limit value was exceeded in the direction of the largest tensile stress.
Tension cut-off criterion 1 is the determining one if a relatively low compressive
stress is acting in a direction perpendicular to that of the largest tensile stress, in
which case the limit value is the uniaxial tensile strength f.,. Tension cut-off criterion



2 is applicable if there is a relatively high compressive stress acting in some other
direction. The limit value then varies linearly from f,, to zero in the case where the
compressive stress attains the compressive strength f...
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