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BUCKLING STRENGTH OF PLYWOOD
Results of tests and design recommendations

Summary

Tests were carried out on 100 specimens of Canadian Douglas fir plywood to verify
that reasonably good agreement exists between the buckling theories and the actual
behaviour of plywood. From load-deflection curves values for a critical buckling
strength can be determined, which are in good agreement with theoretical values in the
case of simply-supported edges. A clamped boundary condition could not be realised in
such a way that the theoretical values were approximated. For design purposes this con-
dition should not be presumed.

Attention has been paid to combinations of normal and shear stresses on the basis of
theoretical considerations. This leads to proposals for the scope of design recommenda-
tions, which have not been worked out in detail here.






Buckling strength of plywood

Results of tests and design recommendations

1 The investigation
1.1  Object

The object of the investigation is to verify that plywood follows the usual buckling theo-
ries and that the use of the various mechanical properties as laid down in design codes
leads to sufficient accuracy, or in any case to a sufficient degree of safety, in the predic-
tion of the buckling strength.

A further aim of the investigation is to deduce safe design rules for structures and
structural components, where plywood is loaded in compression and/or shear in its own
plane.

Y
b direction of face grain
-
= —— s
g5 ! = b
= !
= =
= = L]
R - X
Fig. 1.

1.2 Theory

Plywood is assumed to behave like an orthotropic linear elastic material.

On the basis of the differential equation of the rectangular orthotropic plate together
with an assumed plane after buckling an equilibrium state can be found if such a plate is
loaded in its own plane, subject to certain boundary conditions along its edges.

If for a rectangular plate, simply-supported along its four edges, the curved surface
after buckling is

b
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the smallest value of the stress o, in Fig. 1, necessary to accomplish this equilibrium
state, is found to be
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and where mand nare the number of half-waves in the X- and Y-direction respectively. If
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the formula for the critical stress becomes
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where K= “buckling factor”.
Generally in the non-loaded Y-direction of the plate only one half-wave will develop;
in that case n=1 and
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Values of K are given in Fig. 2.
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Fig. 2. Values of K for plates with all edges simply supported [3].
(Numbers in [..] refer to literature listed).

For rectangular plates with clamped edged in the X-direction Lekhnitskii has given a
solution from which follows a critical stress (n=1)
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For this case values of
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are given in Fig. 3.
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Fig. 3. Values of K for plates with edges //X-axis clamped; the edges //Y-axis are simply-
supported [3].
1.3 Test program

To control the validity of the theories for plywood, specimens of two thicknesses (8 resp.
13 mm) and of different dimensions were tested. Data of the test program are given in
Table 1.

Table 1. Test program.

number of
b mm a=alb (see Fig. 1) variables
400 tests // grain —o,, a1l 1% 2 2% 3 3% 4 4% 9
tests L grain —o, hl 1% 2 2% 3 3% 4 4% 6
600 tests // grain —o,, h11h22h03 - - - 6
tests L grain —o, h11hr2- - - - - 4
25

Each test specimen was made in two thicknesses - 8 and 13 mm - and furthermore two
kinds of support were used: simply-supported at all edges, and clamped edges in the X-



direction combined with simply-supported edges in the Y-direction. In this way
25 X2 X2 =100 buckling tests were done.

In all cases Canadian Douglas fir plywood, of the quality Select Sheating, Ext. 1, was
used. The test specimens were stored in the unconditioned laboratory hall for several
months; the moisture content at test was 8 to 10%.

From each test specimen the thickness ¢, the length @ and the width » were measured,
furthermore -the stiffness properties

__ B Er
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Ny
and

Ny = "hGLA2(viN,+v,N,) = Y%G?

were determined.
With these quantities the values of the governing factors

Vﬁy and Ny
V= -, an =
TN, " /NN,

for all single panels could be calculated, as well as the critical stresses.

1.4 Test set-up

All bending tests to determine values of N, and N, were carried out by direct loading of
the individual panels and measuring the deflections (see photographs).

N,, was determined by a four-point loading system according to Nadai (Fig. 4), from
which can be calculated

3LbF

G== 5 and hence N, = Y%G?r.

Especially in these tests only small loads and deformations were used to achieve suffi-
cient accuracy.

In order to avoid too great differences between /; and 4, N, could only be determined
for the square test panels in the program. For the other test panels N,, had to be determi-
ned for representative parts of the whole plywood panel of which the test specimens
were made.

The buckling tests were carried out in a specially designed frame. The set-up and some
details are given in Fig. 5. The load was applied by a hydraulic jack and transmitted via a
balanced beam to two blocks with a V-groove, in which the panel rested. A similar



Bending tests for the determination of N, and N,.
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i

Simply-supported test specimens, loaded Test specimen with clamped vertical edges.
parallel to direction of face grain. Face veneer horizontal, i.e., perpendicular to
a=4; 3 halfwaves. the direction of the load.

a=3; 4 halfwaves.

arrangement was used at the upper edge. At the directly loaded lower edge and at the
upper edge the load and the reaction force were respectively measured, a difference
being possible due to friction along the edges of the panel.

For the simply-supported panels the side members of the frame in the X-direction had
a V-groove for holding somewhat tapered panel edges. The panels to be tested with
clamped edges in two X-direction were held between steel clamping blocks tightened
with screw-clamps.

Depending on the dimensions of the panels, the deflections normal to the plane were
measured at several places by inductive displacement transducers (see photographs).
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2 Test results
2.1 Stiffness properties

Tables 2 to 5 give values of N,, N, and N,, for the test specimens. Mean values obtained
from all these panels are given in Table 6.

Table 2. Stiffness properties; a,- and n-values. Simply-supported panels loaded / / grain of face
veneers

a
Jb»x Y 1 1% 2 2% 3 3% 4 4'A
400 8 t(mm) 8,15 8,10 7,83 8,15 7,95 7,98 8,03 8,00 8,15
N, 170 315 424 697 579 593 524 780 834
N, 79 43 94 89 94 90 98 96 95
N, 68 77 63 77 78 717 63 71 77
a, 0,41 0,61 1,03 1,19 1,59 1,87 2,30 2,37 2,61
n 0,59 0,66 0,32 0,31 0,33 0,33 0,28 0,28 0,27
13 t(mm) 12,1 12,0 12,0 11,9 11,9 11,9 12,2 11,9 12,0
N, 911 915 1705 1846 1838 1818 1819 1925 2095
N, 580 479 528 439 492 362 522 404 451
N, 206 228 229 206 206 206 229 206 206
a, 0,45 0,85 1,12 1,39 1,80 2,00 2,56 2,71 3,07
n 0,28 0,34 0,24 0,23 0,23 0,25 0,24 0,23 0,21
600 8 t(mm) 745 8,48 7,56 7,55 7,58 7,51
N, 434 455 535 581 584 538
N, 39 34 40 39 32 37
Ny, 73 71 54 54 73 73
a, 0,28 0,52 0,79 1,02 1,21 1,53
n 0,56 0,57 0,37 0,36 0,53 0,52
13 ¢t(mm) 123 12,2 12,2 12,2 12,2 12,2
N, 1176 1698 1613 1472 1838 1937
N, 371 491 472 536 434 432
N, 245 248 272 272 245 245
a, 0,38 0,73 1,10 1,55 1,74 2,06
n 0,37 0,27 0,31 0,31 0,27 0,27

' N, and N, are determined for each specimen separately; N,, sometimes was determined for the
plywood panel from which the specimens were taken.

2 N,, N, and N, in kN mm?/mm.

3 The values of N, and N, show great differences, especially if « is small. This can partly be ascribed
to the fact that the E-values were measured in a 3-point bending test in which the load had a rela-
tively great length compared with the span (resp. 50 mm and 160 mm).
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Table 3. Stiffness properties; a,- and n-values. Panels with clamped edges in X-direction loaded
// grain of face veneers
The ey a
E - bx ) 1 1% 2 2 3 3% 4 4%
400 8 t(mm) 7,95 7,85 8,21 7,98 8,47 7,83 7,95 7,85 8,05
N, 241 501 436 449 496 437 487 748 549
N, 91 62 81 72 76 67 64 71 78
N,y 95 59 95 57 55 57 93 94 93
a, 0,39 0,59 0,98 1,27 1,56 1,87 2,10 2,22 2,76
n 0,61 0,33 0,51 0,32 0,28 0,33 0,53 0,41 0,45
13 t(mm) 12,2 12,0 12,2 12,7 12,0 12,6 12,3 12,0 12,2
N, 765 1069 2448 1891 1420 1875 2261 2555 2155
N, 603 467 660 729 620 640 591 377 572
N, 289 184 289 233 180 238 306 206 306
a, 0,47 0,81 1,08 1,58 2,03 2,29 2,50 2,48 3,23
n 0,43 0,26 0,23 0,20 0,19 0,22 0,26 0,21 0,28
600 8 t(mm) 7,58 7,85 8,44 7,85 7,86 7,90
N, 269 502 461 177 474 568
N, 73 67 79 82 82 95
N, 85 91 55 94 85 91
a, 0,26 0,60 0,96 1,65 1,61 1,91
n 0,61 0,50 0,29 0,78 0,43 0,39
13 ¢t(mm) 12,0 12,0 12,0 12,0 12,1 12,0
N, 645 1435 1072 1698 1409 1810
N, 640 474 601 384 620 480
N, 183 177 183 206 183 177
a, 0,50 0,75 1,29 1,38 2,0 2,15
7 0,28 0,21 0,23 0,26 0,20 0,19

Table 4. Stiffness properties; a,- and n-values.

Simply-supported panels loaded L grain of face

veneers
A m— a
EIE_L: Y 1 1A 2 2% 3 3% 4 4'h
400 8 t(mm) 7,58 7,63 7,75 7,73 7,80 7,98
N, 73 102 92 95 107 117
N, 349 382 348 328 328 375
N, 53 63 63 63 63 63
a, 0,73 1,39 2,09 2,71 330 4,01
n 0,33 0,32 0,35 0,36 0,34 0,30
13 t(mm) 12,1 12,0 12,2 12,3 12,3 12,4
N, 354 523 530 498 557 559
N, 1567 1207 1464 1356 1276 950
N, 229 259 229 229 229 229
a, 0,72 1,23 1,93 2,56 3,08 3,43
n 0,31 0,33 0,26 0,28 0,27 0,31
600 8 t(mm) 7,43 8,49 7,54 7,53
N, 53 40 41 43
N, 524 551 494 575
N, 54 74 54 54
a, 0,89 1,92 2,78 33
n 0,32 0,50 0,38 0,34
13 ¢(mm) 124 124 124 123
N, 429 418 579 515
N, 1247 1524 1569 1497
N, 272 242 272 272
a, 0,65 1,38 1,92 2,91
n 0,37 0,30 0,29 0,31




Table 5. Stiffness properties; a,- and n-values. Panels with clamped edges in X-direction loaded
1 grain of face veneers

S -

EIE—LD ' 1 1 2 2 3 3% 4 4

400 8 t(mm) 7,95 7,85 7,95 7,90 7,83
N, 63 102 98 82 116
N, 429 461 423 351 368
Ny, 91 71 91 57 57
a, 0,81 1,46 2,16 3,63 4,00
n 0,55 0,33 0,45 0,34 0,28

13 ¢t(mm) 12,6 12,0 12,3 12,8 12,6

N, 298 388 649 866 831
N, 1422 1489 2420 1349 1702
N,y 238 150 323 238 238
a, 0,74 1,40 5,60 2,23 3,59
Ui 0,37 0,20 0,26 0,22 0,20

600 8 t(mm) 7,75 7,85 7,80 1,73

N, 75 61 83 119
N, 312 493 401 425
N, 55 94 55 55
a, 0,71 1,68 222 275
n 0,36 0,54 030 0,24
13 t(mm) 12,0 12,1 12,0 12,0
N, 372 470 698 650
N, 1060 2950 928 999
N, 183 206 183 183
a, 0,64 1,58 1,61 2,23
i 0,29 0,17 023 0,23

Table 6. Mean values of N,,,* N, * and N,, (in kN mm?/mm)

N/ / NL ny
plywood stand.  coeff. stand.  coeff. stand.  coeff.
t mean  dev. var. mean  dev. var. mean  dev. var.
8 mm 464 137 0,30 76 24 0,32 71 15 0,21
13 mm 1578 490 0,31 523 121 0,23 226 44 0,19

* In this table N,, and N, are used. In Tables 2 and 3: N,, =N, and N, =N,. In Table 4 and 5:
N,)=N,and N, =N..

The mean ratio N,,[N, is 6,1 for the 8 mm and 3,0 for the 13 mm plywood; this means
that {/N,,[N. =1,57 and 1,33 respectively. The mean values of N[y N,,N, = 0,67 and
0,26 respectively. In the investigation the values of @ and % were calculated for each
panel individually and were used to predict the buckling strength; these values of @, and
7 are also given in Tables 2 to 5.
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2.2 Buckling tests
2.2.1 General remarks

During the first series of tests it was noticed that long test panels, showing more than
one buckling half-wave, buckled first at the directly loaded edge. A second buckling
half-wave occurred more to the reaction edge of the panel, for a higher load at the hy-
draulic jack (cf. Fig. 5), etc. After this had happened during the first series the second
load cell at the reaction edge was placed.

In the following tests a varying difference between the loads at the lower and the
upper edge was measured, this being due to the friction along the supported edges in X-
direction. This difference has a tendency to grow with increasing length of the speci-
mens, although the variance is too high to make this tendency significant. For individ-
ual test specimens the load at the upper edge ranged from F,,=0,96F,, to
F, = 0,45 .

These differences occurred at failure; before reaching this stage they were generally
smaller.

It was shown that it is most probably not too unrealistic to assume that the normal
stress o, in the panel varies linearly from g0y to oy,. It was therefore decided that “the”
stress on the panel could be found as the mean value of oy, and o,,. Furthermore the
critical stresses for the individual buckling half-waves were determined and the mean
value thereof was given as the buckling stress for the panel.

2.22 Determination of the critical stresses

The critical stresses themselves were determined from the measurements of the defor-
mations. Examples of the relation between the stress and the displacements normal to
the plane are given in Fig. 8.

It can clearly be seen that right from the beginning of the loading procedure the origi-
nally existing eccentricities* lead to increasing deformations, which after some time
follow a nearly straight line. It is also clear that during the tests the deformation was

* Tnitial eccentricities were measured from 2 to 9% from the shorter edge of the plywood panel.

15
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gradually increasing; there was no sign of a sudden occurrence of buckling as was found
in the investigation described in [3]. This different behaviour could possibly be the
effect of other boundary conditions. In [3] the “simple support” was constructed as
shown in Fig. 9, where half-round laths were glued to the plywood. In the investigation
described here such a simple support was constructed as shown in Figs. 5 and 6.

In most cases the failure load or ultimate load is much higher than the critical load. It
must be added however, that this “post-buckling behaviour” was much more pronoun-
ced with longer plates than with shorter ones, and that this effect disappeared with the
very short plates, where instead the compressive strength was the governing property.

In most cases the highest load caused failure in the plywood plate as in Fig. 10. The
values of ¢, and o, are listed in Tables 7 to 10.

Table 7. Calculated values of o,, (in N/mm?) and test results. Simply-supported panels loaded
// grain of face veneers.

‘rm
Q
S
—

1% 2 2% 3 3% 4 4'h

8 TGH @ 025 05 075 1,00 1,25 1,50 1,75 2,00 225
calcu- 0, 116 3,79 244 223 236 244 225 223 225
lated @, 041 061 1,03 1,19 1,59 187 2,30 2,37 261
surements o, 6,37 3,95 4,15 521 520 476 458 563 559
test 0, 1337 821 4,58 7,15 481 6,96 3.88 511 394
oq 151 123 11,3 18,0 112 161 11,3 128 103
40073 TGH a, 038 0,75 113 1,50 1,88 2,25 2,63 3,00 338
calcu- o, 308 11,8 10,6 11,8 10,6 10,8 10,7 10,6 10,7
lated o a, 045 085 1,12 139 1,80 2,00 256 2,71 3,07
surements o, 214 9,50 12,3 13,4 122 10,6 12,6 115 122
test 0o 154 11,6 146 149 104 11,6 105 122
0w 241 17,6 19,7 18,6 21,1 180 18,6 184 188
8 TGH @, 025 05 075 1,00 125 1,50
calcu- 0o 516 1,69 1,12 103 1,08 1.12
lated o @, 028 052 0,79 1,02 121 1,53
surements g, 7,12 2,08 143 131 145 1.66
test o, 10,1 337 2,15 096 1,04 1,40
o 147 543 696 624 546 525
600 13 TGH @, 038 075 1,13 1,50 1,88 225
calcu- 0y 140 525 469 525 4.63 469
lated o @, 038 073 1,10 1,55 1,74 2,06
surements o, 13,2 577 515 534 511 4,94
test 0, 13,7 653 629 583 476 395

o, 13,8 996 13,5 13,1 10,3 10,6

17



Table 8. Calculated values of 6., and test results. Simply-supported panels loaded L grain of face

veneers
V% a
EE}; A 1 1% 2 2% 3 3% 4 4
8 TGH e, 1 2 3 4 5 6
calcu- o, 223 223 223 223 223 223
lated - @, 073 139 2,09 2,71 330 4,01
surements o, 3,98 498 3,87 3,84 386 421
test 0, 653 596 391 4,62 353 419
o, 840 954 913 9,88 974 104
4005 TGH o, 067 134 2,01 2,68 335 4,02
calcu- o, 13,1 118 10,6 10,6 10,6 10,4
lated
mea- @, 072 123 193 2,56 3,08 3,43
surements o, 11,6 114 11,2 10,8 10,8 9,90
test 0, 144 149 130 12,7 118 114
0w 174 187 156 17,9 156 16,5
8 TGH o, 1 2 3 4
calcu- o, 1,03 103 103 1,03
lated - 2, 089 192 278 33
surements o, 143 1,59 133 14
test o, 121 0,90 1,11
0w 483 422 530 4,65
600 3 TGH a, 067 134 2,01 2,68
calcu- o, 5,80 525 4,63 4,69
lated o 2, 065 138 192 2091
surements o, 5,74 4,71 455 4,73
test o, 693 531 514 534

ou 9,30 9,00 10,8 10,9

3 Discussion of the test results

In the Tables 7 to 10 the first two lines for a certain type of panel are headed “TGH”.
Among other design information, the publication “TGH”* gives Fand G-values for ply-
wood.

For 8 mm plywood it gives E,, = 8000 N/mm>
E, = 500 N/mm?
G = 750 N/mm?

* “TGH” = “Tabellen en Grafieken voor Houtconstructies”
= Tables and graphs for timber structures; [7].

18



Table 9. Calculated values of o, and test results. Panels with clamped edges in X-direction,
loaded // grain of face veneers

T -
H _ Y 1 1% 2 2% 3 3% 4 Y
8 TGH @, 025 05 075 1,00 125 1,50 1,75 2,00 225
calcu- 0o 12,0 485 448 485 439 448 446 437 4.48
lated @ 039 059 098 127 1,56 187 2,10 222 2,76
surements o, 10,5 7,80 9,58 7,54 794 742 828 10,6 9,22
test g, 10,1 739 498 807 528 479 475 581 5,59
ow 12,8 139 147 102 11,5 112 142 159 138
400 15 TGH @, 038 0,75 1,13 150 1,88 2,25 2,63 3,00 338
calcu- g, 34,1 221 223 221 21,6 223 21,5 218 215
lated o @, 047 081 108 1,58 2,03 229 250 248 3.23
surements o, 23,4 228 359 31,1 247 289 30,9 263 302
test O 144 752 139 10,0 13,7 151 139 139
gw 257 214 263 225 20,5 21,1 261 285 253
8 TGH @, 025 05 075 1,00 125 1,50 1,75 2,00 225
calcu- o, 3,88 1,68 157 1,68 148 152
lated o a, 026 060 096 1,65 1,61 1091
surements o, 491 3,83 391 293 424 458
test o, 476 327 279 3,14 2,67 3.0
ou 6,68 10,4 850 9,10 10,6 832
600 3 TGH @, 038 075 1,13 150 1,88 225
calcu- 0, 142 854 866 854 830 8.54
lated @ 050 075 129 138 2,00 2.15
surements o, 893 10,1 9,59 9,80 10,9 11,1
test o, 886 542 635 582 556 668
ow 11,7 133 11,6 154 123 139
With face grain in X-direction:
500
0 8000 ~ @
%G 12(1-v) 2,750 —0.75
£ \/E/ E \/4000000 ’

With face grain in Y-direction:

411:_/‘/: @sza
YVE. V500
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Table 10. Calculated values of ¢, and test results. Panels with clamped edges in X-direction,

loaded L grain of face veneers

j

L a
E A ; A 1 1 2 2% 3
8 TGH a, 1 2 3 4 5 6
calcu- O 4,85 4,37 4,48 4,37 4,39 4,48
lated L ea- a, 081 146 216 3,63 4,00
surements O 8,25 9,56 9,29 7,37 8,68
test Ou 6,60 6,53 545 3,7 7,60
Ouie 8,74 11,1 11,4 6,58 11,9
400 13 TGH a, 0,67 1,34 2,01 2,68 3,35 4,02
calcu- O 21,5 21,5 24,5 21,5 21,5 21,5
lated
mea- a, 0,74 1,40 5,60 2,23 3,59
surements O 18,3 20,3 33,5 27,8 30,5
test O 12,0 8,58 11,6 11,8 11,0
Ouit 13,4 13,8 194 16,3 14,8
8 TGH a, 1 2 3 4
calcu- 0, 1,68 1,47 1,57 1,58
lated @ ca- o 071 168 222 275
surements O 3,03 3,51 3,53 4,20
test O 2,32 2,12 2,35 2,49
Ouit 5,68 5,69 7,32 7,35
600 13 TGH a, 0,67 1,34 2,01 2,68
calcu- O 8,27 8,27 8,27 8,27
lated L ea- a, 0,64 1,58 161 223
surements O 7,75 14,4 10,3 9,86
test O 6,86 7,40 5,26 5,23
Tuie 9,30 9,79 10,1 9,58

For 13 mm plywood E,, = 8000 N/mm?
E, =2500 N/mm?
G = 750 N/mm?

VZSOO
@1 =a \[g600 0,75a

Now

2 X0,75
= —:—__’—5= 0,36
v20-10°
4
ap=a\|l—=134a
2500

20



With these values of E, G, a,, and 1 the practical design values of ¢, where calculated.
These should be a safe approximation of the actual values of o.,.

The 3" and 4" line in the tables give calculated values of o,,, according to measure-
ments; in this case values of g, are based upon the measured values of N,, N, and N, of
each panel separately. If the theory is valid for plywood and if in our test set-up the
boundary conditions are not too inaccurate, these calculated values of ¢., should be in
good agreement with the actual test values. These actual values are listed in the 5™ and
6" lines of the table; here o,, is the critical value determined from the deflections as
shown in Fig. 8; o, is the mean stress reached at the maximum load (post-buckling
strength).

For the simply-supported panels, Figs. 11 to 18 give also the different values. From
these diagrams it is evident that the design values of the TGH lead to conservative
values of o.,; they are on the safe side. The mean value of the ratio

Ucr; test

=1,48,
Ocr, TGH

with a standard deviation of 0,58; the smallest ratio in the tests was 0,84, the greatest

3,21. In Fig. 19 values of 0.5 and o, Tgu are plotted; corresponding values must be

expected to lie above the straight 45°-line; only three results show lower values.
The ratio

Ocr;test

Ocr; calc.meas.

can be used to check if the theory holds for the plywood panels. The calculated values of
o.rare in this case based on the measured quantities N,, N, and N,,. The mean value of
the ratio

Ocr;test
’ =1,13,

Ocr; calc.meas.

with a standard deviation of 0,32; the smallest ratio was 0,68, the largest 2,10. In Fig. 20
values of e iest AN Opcalcmeas. are plotted; corresponding values should lie on the
straight 45°-line.

Deviations of the expected and the test values may be ascribed to friction in the sup-
ports along the edges as described before.

For the plates with clamped edges it appears that the test results are essentially lower
than the calculated values. Also from the deformations it becomes clear that the sup-
posed cosine line between the clamped edges does not occur but that something much
more like a sine line is obtained. This means that even the rather heavy clamping pres-
sure along the steel clamping blocks is not enough to realise this theoretical situation. It
must therefore be doubted whether in practice such clamped edges can indeed be
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O, and O, for simply-supported panels, loaded /] grain of face veneers ;

=400 mm; t =8 mm.

! e ® O ; calculated according to TGH (line 2 table 7)

- = + O . calculated from measurements (line 4 , 7)

— «— = |b x Og; from tests (line 5 ,, 7)

= - o Oy from tests (line 6, 7)
X

@@ etc: n°of column in table 7

Oerin|N/mm? @
15 {
]
@
® ® ® @
[} [e} (? @
10 ‘ f
5 ! ! : » L
@
’__/,/\v\_.\
O @ ©® 0 @& o
1 2 3

Fig. 11.



G¢r and Gy, for simply-supported panels, loaded//grain of face

veneers ; b =400 mm; t -13 mm.

o s 0

O infN/mm? . °

20 ©)
@ ® 0 T
o
X
15 I
x
+
+x
©
10
Y a e GO . calculated according to TGH ( line 8 table7)
+ Oy . calculated from measurements ( line 10, 7)
— —
— - X Og : from tests (linen , 7)
— -« b O Gy from tests (line12 ,, 7)
— @,@. etc : n* of column in table 7
X
5
1 2 3

Fig. 12.
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Q
]

cr
20

Ger and G, for simply-supported panels, loaded // grain of face veneers,

b~ 600 mm, t_-8 mm.

N/mm?
| |
Y N | !
-
— — o Gy : calculated according to TGH (line 14 table 7)
E E b +  Gg ; calculated from measurements ( line 16 7)
E g x  Og  from tests (line 17 7)
- X ° Oy : from tests (line 18 7)
D)., etc: n° of column in table 7
O)
[}
x

Fig. 13.



Ocr and Gy for simply-supported panels, loaded //grain of face veneers :

b = 600 mm, t =13 mm

Gerin

e
o
~®

Fig. 14.

7)
7)
7

N/mm?
-——3——-1 e G, . calculated according to T6H (line 20 table 7)
- + O : calculated from measurements (line 22
— = b X G, : from tests (line 23
= -— E o Gy : from tests (line 24
L - X M. (@), etc: n® of column in table 7
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Ger and Gy for simply-supported panels, loaded lgrain of face veneers; b-400mm t-8mm

[T
[T

° G, : calculated according to TGH (line 2 table 8)
+  Gg : calculated from ements (line & , 8)
X X Ge ; from tests (lines ,, 8)
©  Gyy: from tests (lines . 8)

@@ etc: n° of column in table 8.

in|N/mm?

S

0 @ B ©l6
@ [ s o

5
| ;

Fig. 15.
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G and Gy for simply- supported panels,

Y a L4 zcl’
1 + Oy
T — —] X Ger
o0 |N/mm? I H b ° Oy
207 5 5 .
f @
©) 1S
[o]
®
©) ® |
154+
x
o |
X
+ x
. ® ® ®
0 E
5
2 3 4

—>dy

Fig. 16.

: calculated according to TGH (line

: ‘calculated from measurements (line
;. from tests (line
from tests (tine

@, etc: n® of column in table 8.

loaded L grain of face veneers; b —400 mm, t =13 mm

8 table 8)
10 8)
" 8)
12 8)

27



28

Ger and Gy, for simply-supported panels, loaded L grain of face veneers; b=600mm ; t=8mm

Y A - S— ® O :calculated according to TGH (line 14 table 8)
+ O :calculated from measurements (line 16 . 8)
| b
— — X G :from tests (line17 .. 8)
- I - b o Gy from tests (line 18, 8)
— = 7 @ @. etc: n° of column in table 8.
¢in[N/mm?
15
10
- Plo
@
+
+ | +
,)\X>_<ﬁ’ x L
© @ " ®
1 2 3 4

Fig. 17.



G and Gy, for simply-supported panels, loaded | grain of face veneers; b — 600 mm, t = 13mm

% .
—— e O :calculated according to TGH (line 20 table 8)
+  Gg :calculated from measurements (line 22 , 8)
- ] X Ger ; from tests (line 23 ,, 8)
— I — b o Gyt ; from tests (line 24, 8)
- ®. @. ete: n® of column in table 8.
X
T G) @
2| )
Gep in|NAm
0 O]
’/
5 e (5' ,/g\‘_
1 2 3 4

Fig. 18.
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Ocr from test

20

10

WP

s

simply

supported

thickness

direction of load
to face grain

£
E| 8 mm 1 ()
o
<
£ 8 mm 1 @
=)
-5;13mm 11 [))
113 mm 1 @
E 8 mm 11 [\ ]
2
8| 8mm 1 ®
=
s/13mm| 1 ®
3
13 mm 1 @

10

15

20

Gyrcalculated on the basis of data from T.GH.[7]

Fig. 19.

achieved. In most cases the critical stresses as well as the ultimate stresses are some-
what higher for the clamped panels than for the simply-supported ones.

4 Conclusions

There is good agreement between the test results ¢.,and the theoretical values calcula-
ted on the basis of measured dimensions and properties of the panels, This holds for the

simply-supported panels.

Deviations must partly be ascribed to friction along the edges of the panels. The
panels with clamped edges did not reach the expected values, most probably due to
insufficient clamping. It must therefore be doubted whether in practice effective clam-

ping can be achieved.

The values of ¢, calculated on the basis of design values in the TGH are much on the

safe side.

Safety is furthermore increased by the fact that the post-buckling strength is generally
much higher than o,,. Only in very short panels did this effect disappear; in those cases
the compressive strength of the plywood determined the strength.
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Gcr from test

simply supported

20
thickness direction of load
to face grain
Elemm| 1 | O
§ 8 mm 1 @
g 13 mm " ©
15 LSS 13 mm 1 ®
') El 8mm I o
§ 8mm 1 (N
0 g 13 mm It ®
z
13 mm 1 @
10
>
o
¢ ¢
5 > Ot S
\ ]
s,/ og¢®
0 5 10 15 20

Ocr calculated from measured values of stiffnesses

Fig. 20.

N
S
\ H

Fig. 22.
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5 Recommendations for design

Assuming, on the basis of the foregoing, that the theories developed by several authors
are a good tool for the prediction of the behaviour of plywood, the theory has been ela-
borated for more complex situations. These theoretical results lead to some design rules
after simplifications have been made.

5.1 Theoretical values for various loading conditions

In the following it is assumed that a plywood plate can be loaded with normal and with
shear stresses along the edges. The theory is limited to combinations of normal stresses
which are linearly distributed and shear stresses wich are uniform along the edges. Both
cases will be dealt with separately and afterwards combinations will be studied.

I
[
o

Fig. 24.

5.1.1 Normal stresses

For the orthotropic material it can be shown that the critical stress oy, can be calculated
following

47
Oxcr = K ZE; Nx]Vy
where (cf. Fig. 24):
Oy = highest value of the compressive stress
Yo, =the other normal stress -
0.er and ¥Yo,., = the critical values of o, and Yo,
Nyand N,  =plate stiffness as defined before
K = buckling factor, the values of which depends on
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¢ N,
a=a V—y as well as on p and on 3= ==

N, /NN,

“Festoon” curves for different values of y and dependent on « are given in Fig. 25. It
appears that p and 7 both have great influence. For constant values of p and 7 the effect
of a, is less important if @, >1: at least for design purposes it seems to be justified to
neglect this effect. This means that then the effect of o= a/b and of the number of half
waves no longer plays any part. This leads to a graph as given in Fig. 26, where the mini-
mum values of the curves of Fig. 25 are adopted as sufficiently accurate values for K.

If, as in [3] v,=v,=0, then

Er Et Eyt 2E,,
Nx - —’1_2-’ Ny - W’ ny = 6 ° and n= EXE:V,
12 T T T
xY \\ U‘L of il
n JI % o % ‘l .
Vo= o

\

\
NN

\

NN (T

. ) ’ \ \
T =0 |02 04 0508 10 §§
-20 -16 -2 -08 -04 0 04 08 10 12

—L

Fig. 26. Practical approximation of buckling factor K for simply-supported plates, loaded with
linearly distributed normal stresses o,.
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with which

LS
O = K- 372“ \/ ExEy.

Further simplification can be achieved, if for a certain material or a group of materials
the value of 7 deviates not too much from a mean value. In that case K could be given,
for example, for the most frequent compression load (¥ = 1) and for bending (¥ = — 1);
together with some realistic values of E, and E, really simple design formulas can be
found.

—_— - — —o

P ———a—

Fig. 27.
5.1.2 Shear stresses

The relatively simple case of constant shear stress 7 along the edges is considered here.
According to [3] it can be shown that

=K iﬂj VNN

bt
With v, =v,=0 this becomes

it
To=K —5 YV EE}

30

Values of K can be read from Fig. 28, which graph can for practical purposes be simpli-
fied to Fig. 29, where the “wrinkles” of the curves - depending on the number of half-
waves - are neglected and where for practical reasons a tangent is used for o, <1 instead
of the asymptotic curves.

Because of the variability in the thickness and mechanical properties of plywood t is
not possible to arrive at an accurate value of @,. The original Fig. 28 gives way to very dif-
ferent values of K with small changes of a, if @ <1; this effect has been avoided with the
use of the tangents instead of the curves.

5.1.3 Combinations of bending or normal stresses with shear

If the symbols o, and 1., used also for the plate with normal and shear stress only, and if
oy and 7}, are used for normal and shear stresses in combination, according to [3],

35



50

1T 1T ]
J , i
Lo e e Txy
Ty t
40 a | e i _
e
o
2 =
OQEVEI; m %Ey'
30
20
|\~
\-\\'c 7-10
\&H\\\\ . 05
" \\Q\ n
———F—F——1- 00
10 20 30 40
X,

Fig. 28. Buckling factor K for simply-supported plates loaded with constant shear stresses 7., [3].
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Fig. 29. Practical approximation of buckling factor K for simply-supported plates loaded with
constant shear stresses 7.
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05

graphs can be plotted in which the relationship between ¢.,./ 0., and 1.,/1,.is given both
for the case where ¥=1 and ¥= -1 (cf. Fig. 31).

The curves in Fig. 31a are partly more or less parabolic; in Fig. 31b the circle is a bet-
ter approximation. For reasons of simplicity it is proposed to use a safe circular boundary

1 \2 1\2
(Q) + (T—) =0,85 (=0,922)

UL‘I'X Cr)

This circle is also given in Fig. 31.

suggested approximation

05

" Oky=1,0 (M= 0 to 1,0)

—OXy= 15 (7= 0 to 1,0)
—Oy= 20 (7= 0 to 10)

y ¢=+1,0
Ox Lo B—L ————t Ox
1 |
AE | " t E
et Box
ko2 ] ¥0x
— |
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Fig. 31.
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Approximation of calculation boundary for stress combinations by a circle.
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5.14 Combination of normal stress in two directions
(uniformly distributed)

If again o, and ai,y are used as the symbols for the combined actions and if o, and o,,,
are the critical values where there are only stress in the X- or in the Y-direction, it can be
shown that the following relationship holds (see Appendix):

1 1
Ocrx | Ocry _

Ocrx * Ocry

which is a straight line in Fig. 33.

)
§18

I ‘ 1 Gr

ry

Fig. 32. Fig. 33.

5.1.5 Combination of two normal and shear stresses

Based upon the relationships in the foregoing it seems not too risky to extend the
boundaries to a three-dimensional system such as Fig. 34, which could be described by

1 1\2 1\2
(g_cﬁ’f_l_ gﬁ_’X) + (&) = 0’85
Ocrx Oery cr)

This three-dimensional diagram is only an extrapolation of the three boundaries in the
three main planes; there is no verification available as yet.
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6 Aspects of safety

Assuming that the design values of the TGH will remain unchanged, design calcula-
tions will be based on them in the near future. Safe design values for buckling must
therefore also be based upon the TGH.

In Tables 7 and 8 values have been given for Ocr;TGH ANd Oy 1ese. For the simply-sup-
ported panels - the clamped panels are not considered here any more - the mean value
of the ratio o, iesi/ 0cr, TG Was 1,48, with a standard deviation of 0,58.

In Table 11 the values are given in certain groups, from which a coefficient of varia-
tion can be calculated, according to

RGNS
Vmean = W

from which v,,.,, =0,19.

Table 11. Values of 0,,. e/ 0. 7gu; simply-supported panels

b t // or L ratio st.dev. var. coeff. n
400 8 // 1,99 0,25 0,12 9
13 // 1,16 0,15 0,13 8
8 L 2,16 0,54 0,25 6
13 L 1,18 0,07 0,06 6
600 8 // 1,49 0,53 0,35 6
13 // 1,09 0,18 0,17 6
8 L 1,04 0,15 0,15 3
13 L 1,08 0,09 0,08 4

This latter estimate is a better one than the one calculated earliéer, because here the sys-
tematic errors for the various groups are eliminated. Using this coefficient of variation,
an allowable value of a buckling stress can be calculated according to the theory in [6],
from which

T = Ocr; TGH
[
2.1

where no reduction for long time loading is as yet introduced. With respect to the test
values there is a mean safety of =~ 3,1

_— 1’48 * Ocr; TGH _ Ocr; test
O™ 1x148 3,11

It is assumed furthermore that a good approximation of the behaviour of the plywood
plate under increasing loads, after creep and possible other effects have taken place, is
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given by the —.— line in Fig. 35. From this diagram it is clearly assumed that, after the
creep period at full o, an overload causes deformations on the basis of the original plate
stiffness. Failure is assumed to occur at the same deformation as in the short-duration
test. As o, =~ 21,, failure after constant preload to @, occurs at a load of

Oulr™ ( O™ acr) =20~ ( O™ 0,3 2 Ucr)

1,320, _

0320, 4% O

=1,320,, i.e., at

On the basis of the foregoing a set of limits to the stresses can be proposed:

1. the calculated stresses in a plate, resulting from the loads on the structure, must not
exceed the allowable normal stress Geompr and the allowable shear stress 7

2. the calculated stresses must not exceed allowable critical stresses o, 7., Or certain
combinations thereof.

In the case of stress combinations the calculated stresses oy, 7, and 7 must satisfy the

equation:

2 2
[ 0, T
(__x+ __y) + (:—) = 0,85
GXC" O’yc" TCI'

For practical purposes the following equation can be used:

2 2
0. 0, T
Oxcr  Oyer, Ter

In this case we have to multiply the formulae for Gy, 0, and 7., by a factor 0,92.

Based on the foregoing, the behaviour of plywood as a structural material in load
bearing structures can be analysed. For practical purposes, sets of calculated values for
various plywood and for certain loading conditions can be given. Experience and fur-
ther research may lead to the adoption of lower safety factors in the future.
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APPENDIX I

Stability of a rectangular orthotropic plate compressed in two directions

A rectangular plate of thickness zand with its principal directions parallel to the edges is
compressed by uniformly distributed stresses o, and o,. The problem of stability of such
a plate has been solved for the case of four supported edges (see Lekhnitskii: “Anisotro-
pic plates”). The differencial equation will have the form:

64w+ N o*w N 84w+ . 62w+ ) *w
— — Oy 0, —5
ax* o Vo

Ny
Yoxtay oyt

=0 )
For a solution in the form of:

=YY An, sm{i‘sm%

y to,
L T ETE

[
-

jisiiAR AR AR AR RAAR
a

Fig. 1. Rectangular plate compressed in two directions.

We obtain the relation:

o - s el ]

For the case where o, and o, vary but maintain a constant ratio:
ox={ and o0,= @

a critical value of 7 can be found as

i Vo =
|\ =M —|\—|n
_TYNN, IN, \a N.N, N, \m
1’ a\2
1+¢ (%) n?

cr
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£2+1/T 2y K‘fz 4
4NN, 2wa) 77 T \om) "

2
th - <£)2 ,
@ m n

3

where:
N,, N, = bending stiffness in x- and y-direction respectively
N, = torsional stiffness
t = thickness of the plate
a =ratio afb
v =INJN,
m, n=number of waves in x- and y-direction respectively

From Lekhnitskii’s formula 3 we can go further as follows: the critical value for 7 will
be minimum when n=1. Equation (3) reduces to:

m

o) s
42 NN, \owa) T om) 2 NN,

or [bz » 2 Ibz
1+¢ -

For compression in the x-direction only: 7, »=0= Oxer; fOr compression in the y-direction
only: @ =«= 0y, For orther values of g the combination:

4)

Owr="{o and 0y, =pl,

becomes critical.

In general we find the minimum value for 7., by taking the minimum value of the
second part of equation (4):

m\ o (W_a>2
\owa) T am

. 2 s)
[24
I+o (E)

In Fig. 2 the minimum values of K have been plotted for w = 1 and different values of = 1;
(=0;0,2; 0,4; 0,65 0,8; 1,0) and ¢ (=0; 0,2; 1,0; 10,0).
From equation (4) and for m=1 we obtain the following relations:
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so that:

Trer, Ber_ 1 ol _
Oxcr  Oyer 1+§0a2 1+(0[Z2

(6)

From Fig. 2 it can be seen that for different values of ¢ and a particular value of @ the
minimum value of K will be reached for different values of m. In that case equation (6)
does not hold anymore.

However, from Fig. 3 it can be seen that the differences from the straight line are
rather small and that relation (6) is safe. These graphs are given for:

w=0,5; 1,0; 1,5; 2,0;
1 =0,4;
@ varies from 0 to 100.

However we want to use the real minimum value for K (see Fig. 2) so we have to check if
relation (6) is also operative in that case. From dK/da =0 (see equation 5) we obtain &
where K is a minimum:

m> 1 W
a'2=goywz_—27/(;[li \/1+;M~2W)J

Only for w?=25¢p > 0 do we get real values for « and real minima for K. If w259 < 0
the curve for K has no real minimum but an asymptote.
In case w*—27¢ > 0 and for #=1 we find:

for 77=0 we find in case ¢ > w’:

2 2
=9 S0 Knpn=—
w

4o
In case ¢ < w* we find:
2
0,5
=" and Kpp=—"s
e Bmin = (o)
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Fig. 2. Festoon curves for K forw=E,/E, =1 and various values of 1 and ?.

Relation (6) becomes now:

4(1-p/w?) 4p(1—g/w 3p 4¢?
n=1: ( 1(0/ )+ i W2(0/ )=1+F(0—W—gj1

The condition was w*=2¢ > 0 or ¢ < ‘2w For @ =0 relation (5) becomes 1 and for
@ ~ 2w relation (5) is less than 1,5.

we woow
n=0and ¢ > w: ——+—=—+1=~ 1
' and ¢ > 2 w29
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Fig. 3. Relation 0,/0,, and o,,/0,., for =0 and various values of @, wand ¢.
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N=0and ¢ < w:

As mentioned before, the curve K will have an asymptote when w?=2ngp < 0. This
asymptote is K= w?/p.
Relation (6) becomes now in the case 7=1(p > 'sow?):

wz/(o w2
—+—==1to 1,1
4 W o 1,125

and in the case 7 > 0 (p—> o) then relation (6) becomes equal to 1.
Both theoretically and based on the minimum values of K, relation (6) appears to be a

rather good and safe relation to approximate the critical stability situation of a plate
compressed in two directions. Relations (6) ranges between the values 1 and 1,5.
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APPENDIX II

Stability of a rectangular orthotropic plate uniformly compressed in one direction
and loaded by linearly distributed forces in the other direction

The problem of stability of an orthotropic plate loaded by linearly distributed forces in
one direction has been solved by Lekhnitskii among others. The combination with uni-
formly distributed compression forces in the other direction (Fig. 4) can be solved as
follows.

IR R NN RRNEE
Yy G
S Tb o=0.l1- B
‘ pei-y
1
ERsANAARASRARERARAIG) O
e a ‘}

Fig. 4. Rectangular plate uniformly compressed in one direction and loaded by linearly distri-
buted forces in the other direction.

The potential energy of the external loads is:

abt( )( )2 ta”b<8w>2
U= (1= d “ —
(5)(5)2 B xdy+2(§)(§) 3 dxdy

The strain energy is:
a b aZw 2 82 82 2
=Y \ ( >+2N( >+N( }dd
? (5) §) xd o) | Y

The solution for the deflection that satisfies the boundary conditions is:

mnx | nmy
w=) YA m,,sstm b
m n

When the number of waves in y-direction is fixed at n= 2, satisfactory accuracy can be
expected to be attained. In that case the deflection is

27 mnx
w= Z m1 Sin ny+Am2 sin y) sin ——
y b a
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This leads to:

g_:z <Aml sin %+Am2 sin %TX)%Z cos m—am‘c
‘;2_; - (A,,,l sin "+ 4, sin 2*?) (%E)z sin ==
(Siv= -ﬂi (Aml sin 2+ 24, sin Q) sin
& v b e

Substitution into the equation for the potential energy gives:

a b 2 2
_ lox oY Ty . 2m)\*(mz max
U= (f) (5) (1 B b) (A,,,l sin -+ Ay sin == ) (7 cos —= ) dxdy+

+§g_y 5: g %(Aml cos — b +2Am2 cos 2—2—)}) sin —— dedy

zf;’_x Vob A+ b A2y _Jg( 2 Ve A, A, 1967;2 2, bz)l :n2.1/2a+
’%5 (A2 Yo Ay ob) - Tra

=£§l-%b-T:Tﬂ2(A:fm(l—O,5ﬂ)+%f A Ayt A2y (1-0 Sﬁ)‘
%'ibz (An+ A7)

=%#{ A2 (1-0,55) + 352 ,771A,n2+Am2(1—0,5J8)] y:%a(A 1+42%,

Substitution into the equation of the strain energy:

a b Py 2
=% [ | .NX (A,,,l sin = +A,,,2 sin ) ( sin @> +
0 0 b b a a



+

m max\*
ab a

+2N,, (Aml cos 5 +2Am2 cos ) ( cos ——

20\ (7 :
+N, (Aml sin %+ 44, sin %y) (b2 sin m—a——) ] dxdy

e 2 4
=" {Nx(Af,ﬂ-l/zb+A 1/zb) Yha+2N (A2 - b+ A, ) = a0

4
+N(A2 - ob+1645, - 2b) % 1/zal

i e
-3 l (A2 A2y —— +2ny(A21+4A 2) oy

m2ﬂ4 N, (m\*> 2N, N, [a\?
—— /NN, |42, = = +
™ Bab N[ 1{ () NV, ()}
N, (m\> 8N, N, (a\}|
+A2, —x(~ +—=+16 -y—(ﬁ>
"IN, \a NN, N, \m

8ab VNN(A lam1+Am2am2)

+N(A21+]6A 2)

Now

4.2 1o, bZ

L Tm s 2
-U sab VNN, [Aml ‘aml \/W(l 0,58) — 2772\/—7\7,

YRy, i 0B g5 - H
m m. m. am
9 INN, T 2NN, m NN,

Differentiation with respect to 4,,; and 4., gives:

164
Am{am=h(1-0,58)— Ao} = Am> 9 0
T6hf
-An mlam—M(1-0,58)— A} =
1 9ﬂ2 Amp{am—M( B)—Aa}
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in which

to, b to,a

TANN, M AT NN,

The solution of these two equation can be found by equating the determinant to zero.
Thus:

A

)\ 2
{am=h(1=0,38)=ho} {an=h(1-0,58) =k} - (12112/;) -0

For the case where o, and ¢, vary but maintain a constant ratio:
ox=¢ and o,=¢-¢

then
/12=/11'(0"2
m

The critical value of £is now:

47%[NN,

Y
Zcr= [b2 X

7 )
(am1+am2) (1_0,5ﬁ+¢ 51_22) + V<1_055ﬁ+¢ ZZz‘) (aml_am2)2+amlam2 (ggg)
m m 977

a2\ 168\

s {1-osmeo 1) - 7))

The buckling factor K, becomes

X

a a\ 3268\
(am]+am2) (1 _0»5ﬁ+(o ;nhg) +\/(1 _O’5ﬁ+¢ ?) (amlﬁam2)2+amlam2 (9;”?)

oo ) -]

In Figs. 5, 6,7 and 8 combinations of 0%,/0., and o,,,/0,., are given for various values of
@, w, a and B. It can be seen that for m =1 relation (6) Oker/Oxert 0ye,/0,, =1 is a good
approximation. For other values of m relation (6) is safe.

In Figs. 9 up to 12 “festoon” curves for K are given for different values of 8, ¢ and w
(omega in the diagrams).

K=
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