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REALISTIC ANALYSIS OF REINFORCED CONCRETE
FRAMED STRUCTURES

Summary

A calculation of the complementary moments due to second-order effects and the
analysis of the stability of reinforced concrete framed structures can be conceived as
follows. With the aid of a computer a very large number of M-N-x diagrams can be
produced on the basis of the standard specified stress-strain diagrams for concrete
and steel. A framed structure is then analysed with an available program which takes
account of second-order effects. The flexural stiffnesses EI to be adopted are estimated
and corrected with reference to the M-N-» diagrams calculated once before and held
in store for the purpose.

The present paper discusses the drawbacks of this approach and proposes a method
of analysis which can be fitted into existing programs for framed structures and
dispenses with the large number of stored M-N-» diagrams. It is shown that direct
use can be made of the stress-strain diagrams. The results are just as reliable as those
obtained by the procedure utilising the M-N-» diagrams.
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Realistic analysis of reinforced concrete
framed structures

1 What went before?

Since 1967 there has, in the Netherlands, been animated discussion about how the
stability of tall buildings can be investigated. Although the term itself is not usually
employed, it is widely realised that we are here faced with a non-linear problem. The
fact that the framed structures under consideration, composed of bar-type members,
do not behave linearly is due to two causes. For one thing, the horizontal displace-
ments become so large that the vertical loading gives rise to additional moments in
the columns. This second-order effect is sometimes formally referred to as geometric
non-linearity. The second cause is the material non-linearity, also known as physical
non-linearity. Concrete cannot resist tension, and its compressive stress-strain dia-
gram is not linear, but curved. For reinforcing steel this latter phenomenon applies
both to tensile and to compressive stress. This material non-linearity is usually
embodied in a moment-curvature diagram dependent on the normal force (M-N-x
diagram).

Since 1969 the discussion took a turn in that a more computer-oriented approach
has now been adopted. This is based on Livesley’s [1] publication in which he shows
how second-order effects can quite simply be incorporated in the known computer
programs for the analysis of framed structures in accordance with the displacement
method.

The type of program in current use can indeed take account of the development
of ideally plastic hinges at the ends of the members, but considers each member
otherwise as a prismatic beam with constant flexural stiffness EI and extensional
stiffness EA. In practice the procedure for using a program of this kind is as follows.
First an estimate of the expected stiffness values EI is made, and on completion of
the analysis it must be checked, with reference to the moments obtained, whether the
assumption for EI was correct. To do this it is, in principle, necessary to have a large
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number of moment-curvature (M-x) diagrams at one’s disposal (Fig. 1). If the estimate
is found to have been significantly incorrect, the calculation will have to be repeated.

2 What do we need?

Estimating the stiffness

We should like to replace the procedure for correcting the flexural stiffness, as des-
cribed above, by a more automated technique. The M-x diagrams could perhaps be
stored in the computer. The program can indeed be so arranged that it will itself
seek out the corrected EI values from this collection of diagrams and repeat the
calculation. However, if we consider this idea more closely, we shall soon realise that
this is not the way to tackle the problem. For one thing, the number of possible
diagrams is very large. We shall wish to provide a wide choice of cross-sectional
shapes for the structural members, and many different systems or methods of re-
inforcing them. In addition, the diagram for any particular cross-sectional shape of

a member must be established for a sufficiently large number of values of N. Further-

more, there remains the question of choosing the o—¢-diagram to serve as our starting

point. If it is decided in due course to adopt a modified version of this diagram, it
will necessitate revising the whole set of stored M—N-x-diagrams.

It is these considerations that compel us to abandon the idea of storage of the
diagrams. Instead, the solution to the problem must be sought in a procedure whereby
that part of the moment-curvature diagram which we require at a particular stage is,
at the time, rapidly regenerated in a separate subprogram. This means that for each
new cross-sectional shape we shall prepare a subroutine of its own, here to be further
referred to as “DRSN”. All these subroutines are based on one and the same conven-
tion for the form in which the o—¢-diagram is to be utilised. The part of DRSN which
relates to the chosen o—e-diagram can therefore in turn advisably be accommodated
in a separate subroutine. For reasons which will emerge in due course, the latter will
be referred to as “EMOD”’.

With this approach the following advantages are achieved:

— For each cross-sectional shape of a structural member we have to produce one
subroutine (DRSN) instead of a large number of M-x-diagrams. This subroutine
is not dependent on the convention for the o-e-diagram and can therefore be
utilised as long as the need to apply that cross-sectional shape exists.

— If a different o—e-diagram is adopted, it will be necessary merely to alter one small
subroutine (EMOD) which is applicable to all cross-sectional shapes.

— This new proposal will have the effect of reducing costs, because the performance
of computational operations by computer is becoming steadily cheaper. On the
other hand, M-x-diagrams would have to be stored permanently accessible in
backing stores, so that this system could be relatively expensive.

— The interchangeability between various computer centres is greatly simplified. A
subroutine written in standard FORTRAN is easier to despatch than a tape or a
disc with tabulated data.



Stiffness varies along member

Since we can now simply automate the procedure of estimating a new stiffness value,
we should like also to obviate another imperfection in programs as mentioned in 1.

It is not true that in reinforced concrete structures the flexural stiffness EI along one
and the same member is constant. This would be so only if the bending moment
acting on the member were of constant magnitude along the whole length of the
latter. As a result of cracking in the tensile zone and plastification in the compressive
zone the flexural stiffness is less according as the moment has a higher value. Fig. 2
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illustrates that a linear moment distribution in the member is associated with an
arbitrary distribution of EI, which is deducible from the moment-curvature diagram
in the manner represented in Fig. 1.

It will be shown that this aspect can very simply be accommodated in the existing
displacement method programs.

Centroidal axis shifts

The computer programs familiarly employed in structural analysis schematise an
elastic framework to a system of axes or centre-lines of members which in general
intersect one another at the joints of the structure. Each such centre-line coincides
with the centroidal axis of the member in question. It must not be confused with the
neutral axis of the member, which (in this particular context) is the line at which
zero strain occurs and which will coincide with the centroidal axis only if there is no
normal force acting. The centroidal axis for a member of composite section is cal-
culated with due regard to the different moduli of elasticity of the constituent parts.
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A problem arises in circumstances where cracking and plastification are liable to
occur. To illustrate this we shall consider a rectangular section provided with sym-
metrically arranged reinforcement (Fig. 3). An obvious choice is to choose the axis
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of the member as being located at mid-depth (%, being the depth of the section).
The concrete conforms to a bilinear 6—¢-diagram which is of significance only for the
compressive zone, while the reinforcing steel conforms to a two-branched o—e-
diagram which is valid both for compression and for tension. A normal force N
and a moment M act at the section. We shall now consider two possibilities. In Fig.
3a the combination of N and M has been so chosen that the whole section is in com-
pression and the strains ¢ which occur are small. In that case all the concrete fibres
will be located on the elastic branch of the g,~¢-diagram and therefore have the same
modulus of elasticity E,. The reinforcement, too, has remained elastic and its stiffness
behaviour is characterised by E,, which is the same for the top and the bottom
reinforcement. For the distribution of E, and E, thus obtained, the centroid of the
section is indeed located exactly at mid-depth. Our choice as to the position of the
axis of the member was therefore correct.

Now let us consider another combination of N and M. This is so chosen that a
tensile zone develops (Fig. 3b) and plastification occurs. If we again plot the strains
on to the o-e-diagrams, we find that a new distribution of the apparent moduli E,
and E, has been obtained. In the tensile zone E, is zero and in the compressive zone
E, is in part constant, but in the region where yielding occurs it decreases for increasing
values of the strain e. The reinforcing steel undergoes yielding even in the compressive
zone. As a result of this the apparent modulus of elasticity E, is not of the same mag-
nitude at top and bottom. With the distribution now obtained for E, and E, the
centroid of the section does not coincide with the axis located at mid-depth of the
section, i.e., for this case our choice for the position of the axis of the member was
incorrect.

Since we are including the effect of the normal force N on the flexural deformation
in our consideration of the problem, it is necessary correctly to describe the com-
plementary moment due to N. The shifting of the centroidal axis must therefore be
taken into account in the computer program. This, too, will be found to constitute
no more than a minor intervention in the existing programs based on the displace-
ment method.

Summary of desired features

The foregoing considerations:can be summarised in the following points:

1. The existing programs which can cope with geometric non-linearity (second-order
flexural deflection) must be extended to deal with material non-linearity (cracking
and plastification).

2. The extension must be simple to perform in any currently used program based on
the displacement method.

3. The storage of large series of M—N-x-diagrams must be avoided because this is
too expensive and makes interchangeability more difficult.

4. Programming must be so contrived that only a minor alteration to the program is
needed if it is decided to adopt a different o—e-diagram.



5. The variation of the flexural stiffness along the member must find expression in
the calculation.

6. The shift of the centroidal axis associated with second-order flexural deflection is
of importance and must therefore be taken into account in the program.

The requirements stated in points 3 and 4 can be fulfilled by a procedure whereby

the information needed at any particular instant is computed at that same instant.

To this end, a subroutine DRSN will have to be established for each cross-sectional

shape of the structural members. The part thereof which is common to all cases,

namely, the part relating to the o—e-diagram, is accommodated in one subroutine

EMOD which is valid for all cross-sectional shapes.

3 Stiffness matrix S° of a prismatic member in the linear theory

The analysis of a framed structure in accordance with the displacement method will
always follow a scheme as envisaged in Fig. 4. In connection with the discussion of
the procedure it will be assumed that the reader is familiar with the displacement
method as generally applied [1], [2]. First, the stiffness matrix S¢ is determined for
all the individual members of the structure. This can be done with respect to a system
of co-ordinate axes made to coincide with the axis of the member, and then a trans-
formation is performed to the general system of co-ordinate axes which is adopted
for the structure as a whole. In accordance with a fixed procedure these matrices S¢

for all al
members determine S€
A
§ =X §¢
e
solve v from
Sv=KkK
for all from ve follows
members M,D and N
P9
determining the
support reactions .
, Fig. 4.

Approximate flowchart for a linear analysis of
framed structures with the displacement
A, end method.



are combined into a stiffness matrix S which is valid for the overall structure. All the
external loading is brought together in a vector k corresponding to S. The displace-
ments v of the joints can then be solved from the set of equations:

Sv=k )

We next return to the individual member. From v we obtain the six displacements v°
of the two ends of the member, enabling us to calculate the moments M, the shear
force D and the normal force N. We do this for all the members.

Except for minor extensions the scheme represented in Fig. 4, remains valid for
the non-linear analysis. For the type of structures which we envisage here the taking
account of the non-linear effects has consequences only in so far as the stiffness
matrix S¢ relating to the co-ordinate axes system for the member is concerned. This
we shall more particularly consider. The other operations remain valid unchanged.

The reader will already have perceived that it is our wish to make matters as easy
as possible for ourselves. We shall consider only loading applied at the joints and
ignore any hinged connections that may be present or the formation of any plastic
hinges. For these conditions the approach and the procedure adopted in, for example,
[1] and [3] remain valid unchanged. Here we shall confine ourselves to discussing
the extension with regard to those publications.

Separating the elementary deformation problem

The six-by-six matrix S¢ which establishes the relationship between the six displace-
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forces k¢ in the e member.
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ments v° and the six end forces k° in e-th member (Fig. 5) can be built up in two steps.
We shall first explain this for the linear theory.

0;

|
deformations Al

) Fig. 6.
j Elementary deformation
statical quantities problem.

The first step comprises the analysis of the elementary deformation problem of Fig.
6. The three statical quantities k, cause three deformations v,. Their interrelationship
can be written als:

S0, =k, 2

%0 0 Al N
2EI 4EI
O T | |Y] M

We shall now perform the second step. While loading indicated in Fig. 6 continues
to act, we first displace the whole member horizontally through a distance u;, then
let the support i move downwards a distance v;, and the support j next move down-
wards a distance v;. The member is then in the condition shown in Fig. 5. The
displacements u;, v; and v; are small in relation to the length / of the member. The
linear theory presupposes that the rigid body displacement that has been performed
has not changed the stresses in the member nor the forces at the ends thereof. From
a comparison of Fig. 5 and Fig. 6 it then follows:

11



H, =—N Al = —u;+u;

Vi =(M;+ M)/l 0; = ¢;—(v;—v)/l

M;=M; 0; =(Pj"(l7j—l’i)/l

H; =+N 4)
V; = —(M;+ M)l

M;= M;

On introducing the combination matrix C the following shorter notation for (4) can
be written (C” is the transpose of C):

ke = Ck, v, = Cv° ®)
where:

10 01 0 0
c=| 0 1110 =1 0 (©)
0 1)1 0 0 =1/ 0

With the aid of (2) and (5) a relation between the six forces k° and the six displace-
ments v° can be derived:

Sev° = k° @)
The stiffness matrix S° is found to be simple to calculate as:

s¢=C’S,C (3

Quantities neglected in the linear theory

In each of the two steps described above a simplifying approximation is made which
is no longer permissible in the non-linear analysis. In the first step, the elementary
deformation problem, it is assumed that the rotations 0; and 6; are due only to the
moments M; and M. They are calculated as if the normal force N were not present.
If we are to include the second-order effects in our analysis, this approximation, i.e.,
neglecting the presence of N, can no longer be permitted. In the linear theory it is
furthermore assumed that the change in length Al is caused by the normal force alone.
Strictly speaking, a correction should be applied to this if the member is additionally
subjected to bending moments. The resulting deflection of the member causes its ends
to move a short distance towards each other (bowing). However, for normal structures
such as we are considering here, this effect is negligible even in second-order calcula-
tions.

The second step likewise involves an approximation. It is tacitly assumed that the
magnitude of the bearing reactions (M;+ M)/l remains unchanged when the member
shown in Fig. 6 undergoes displacements v; and v; to the position shown in Fig. 5.
In that case we neglect the fact that, because of the slight inclination of the member,
the horizontal forces H; and H; will in reality produce an additional couple. In other

12



words: the normal force N causes additional vertical reactions. To take account of
these a correction AS" must be applied to S°.
Our conclusion is that two approximations, involving the neglecting of certain
quantities, as adopted in the linear theory will have to be rectified:
— The flexural part of S, is dependent also on the normal force N.
— A correction AS" necessitated by the inclination of the member must be applied
to the matrix 8¢ = C*S,C
The stiffness matrix now becomes:

S¢ = CTS,C+AS" )

4 Stiffness matrix S° of a prismatic member in the non-linear theory

Elementary deformation problem

We must establish a new relation between the two rotations 0; and 0;, on the one hand,
and the two moments M; and M|, on the other, in a manner whereby the effect of
the normal force is duly expressed. In theory this can be done in an exact manner by
judiciously solving the relevant differential equation. In actual practice, however, a
simple solution can be found only for prismatic members. If N is a compressive force
of magnitude P, so that N = — P, the relationship is:

sy o ] [u] [

ol gB o |=|m (10)
EI EI

ROl I i B )

where:

_ PBsinp—p*cosp
P = 5 —cos p)— B(sin p)

_ B>—Bsin B
1 =3 —cosp)— B(sin B)
I’p
ﬁz = EI

In the limit case where P is zero, p does indeed have the value 4 and g the value 2,
so that the matrix of (3) is precisely obtained.

13



Correction AS"

The additional vertical reactions due to the normal force N which arise in connection

—

1§
|
|
| -AV;

(_‘° N
Additional vertical reactions due to the normal

Hj  force N when the member is in an inclined
=P position.
¥

AVj

/

)

—_————— e — — —0

with the change in position of the member when S, becomes S¢ are red simply from
Fig. 7. Their magnitude is as follows:

—0

AV, = _—il+ %. N

In matrix notation this becomes:

[0 0 0 0 o0 O] [u] (0 7
0 ']_\1]‘ 0 0 ;—N 0 v; AV,
0 .
0 0 0 0 0 o:|_|0 (11a)
0 0 0 0 0 0 u; 0
—-N N
0 —— 0 0 5 0 v AV;
0 0 0 0 0 of [ [0 ]
or:
AS"® = Ak® (11b)

Total matrix S°

If we substitute S, of (10) and AS” of (11) into the expression (9) for S°, putting N =
—P, we find exactly the same stiffness matrix as previously given by Livesley in [1].
In comparison with his direct approach our treatment offers a major advantage. Of

14



the three components C, S, and AS" which compose the stiffness matrix $° in (9),
only S, is dependent on the stiffness properties of the material used. The matrix C
is determined entirely by the geometric quantity /, and the matrix AS" additionally
by the normal force N. The influence of varying stiffness and a shifting centroidal
axis is therefore confined to the three-by-three matrix S,. Only this matrix is changed
when cracking and plastification (deviation from the linear o—e-diagram) occur.
Thanks to this important conclusion we can now confine our attention to this matrix.

5 Stiffness matrix S¢ for a member with varying stiffness in the non-linear theory

We shall again investigate the problem of Fig. 6, but now for an elastic member
with a given arbitrary distribution of the modulus of elasticity E, which may vary
quite arbitrarily across the depth of the section and also in the linear direction of the
member. This, in effect, is the situation that is liable to arise when cracking and plasti-
fication occur. We shall choose a fixed axis for the member to serve as a reference
line which is independent of cracking and suchlike phenomena. The position of this
axis can be freely chosen. In Fig. 8 it is located at mid-depth. On the other hand, the

I _ cracked

M; | centroidal axis WMM i )(\Ml' W]MM

— *_ff:'?;\g)?_:_m_m.-_ 3 1 | ht

N"‘é axis of member \.\_\‘ L\, ) 'J N £

\”Wﬂﬂmm R vz [

m b B
1 LI | “

A section I-I

Fig. 8. Irregular distribution of the modulus elasticity as a result of plastification and cracking.

centroidal axis is determined entirely by the distribution of the modulus of elasticity
E. We shall now consider a section /—I. From the known variation of E across the
depth of the section the location of the centroid of this section can be determined.
Let y, denote the distance thereof to the chosen fixed axis.

We now choose the centroid as the origin of the vertical axis y (see Fig. 9a). The
extensional stiffness EA and the flexural stiffness EI are determined by the well known
standard formulas:

he—h

EA=b | E(y)-dy

—h

(13)
hi—h
EI =b | E@y)y*-dy

—h

If a normal force N and a moment M are acting at the centroid, a linear strain
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distribution develops across the depth of the section. This strain can be separated into
an average strain &, which is constant on the whole depth and a curvature portion
which is of zero value at the centroid and has a linear distribution from —x/ to
%(h,—h). The relation between &, and x, on the one hand, and N and M, on the other,
can be expressed quite simply with E4 and EI:

EA O 3 N

| = (14

0 EI X M

The behaviour of any section is determined by the three data y,, EA and EI. On the
basis of this information we shall now proceed to construct a stiffness matrix S,
which is defined at the fixed axis of the member. We shall accordingly let the normal
force N from the vector k, act at that axis. It appears that S, can be worked out in
two ways. The first of these ties up with the finite element method, which is used for
the analysis of slabs and plates. An assumption is made as to the distribution or
pattern of the displacements. This is not a new feature in stability analysis. Van
Leeuwen and Van Riel [5] utilised a sinusoidal deflected shape, even though it was
known that a different shape would occur in reality. The second possibility is equally
interesting in that it establishes a link-up between the analysis programs for frame-
works (composed of bar-type members) and the stability analysis which Van Riel
and De Groot performed with the aid of the finite difference technique quite some
time ago [6]. In the present paper we shall more particularly be concerned with the
further development of the finite element method as an approach to the problem.

\

ht L Yz |
calculated centroidal axis 200

SN

b Zg Xy total strain stress

chosen_axis of member

ht YJ_“—H"

g ny total strain

Fig. 9. Definition of average strain, curvature, normal force and bending moment at a section.
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For the procedure employing the finite difference technique a short summary will
be given here; for further information the reader is referred to De Groot’s publica-
tion [7].

Whichever procedure is adopted, we shall base ourselves on the usual fundamental
assumptions of flexural theory, namely, that plane sections remain plane (linear
strain function in Fig. 9) and that normals to the axis of the member remain per-
pendicular thereto after application of loading (no deformation due to shear).

Method of assumed displacement field

We shall first deal with the simpler case where y, is zero. For this case the usual
approach is to assume a linear distribution in terms of x for the displacements ii(x)
in the direction of the axis of the member and to assume a cubic polynomial for the
displacement v(x) perpendicular to the axis:

l—x‘

] i

i(x) = ai+’_lC ;

(15)
o) :x(l—x) 0, + —Xx (l—x).g.

lZ 12 J

The strain &, and the curvature x are:

§ =" = =
7 dx I

__di _u;—u; Al
!

(16)
oo v _4l-6x
x> 2

+ 21—6x.04

7

The potential energy for this member is:

l 2
P= %{j [EA5§+EI%2+N<§—;’> ]dx - 1VAl_Mi0i_Mj0j} (A7)

0

The term with dv/dx in quadratic form under the integral symbol is the second-order
term in this expression. It corresponds to the work done by the normal force N in
deflecting the member.

On substitution of (16) into (17) P becomes a quadratic expression comprising the
three deformations A/, 0; and 0;. By equating to zero the derivative of P with respect
to each of these deformations we obtain three equations containing A/, 0; and 0 -
These equations determine the minimum for P and are written in abbreviated notation
as follows:

Sw,—k,=0 (18)

17



So we have determined the required matrix S,. It is found to be composed of two
components:

S, =82+8" (19)
For these two three-by-three matrices it can readily be deduced that (f = x/):

-
—l!)EAd\// 0 0

S0 = 0 1l§1 EI(4—6y)> dy %f EI(4—6y) (2—6y) dy (20a)

0 113:‘)131(4—6@ Q2—6p)dy iliEl(z—@//) dy

0 0 0 7
S" = 0 2 NI _ 1 NI (20b)
& 15 30
1 2
0 - §6Nz ENl

L -

We can again draw an important conclusion. The matrix S, has one component part
in which the stiffness data do not occur, and the other part is the same matrix that
would have been found for S, in the linear theory.

On working out the integrals contained in (20a) for constant E4 and EI we shall
in fact precisely arrive at the matrix in (3).

With (19) the equation (9) now becomes:

8¢ = CT(S)+S1))C+AS" (21
Writing AS™ to denote all the parts dependent on N we obtain:
AS™ = CTS"C +AS" (22)

and (21) thus becomes:

8¢ = CTS°C+AS™ (23)

We see that the assumption of a displacement field results in an uncoupling of the
material non-linearity and the geometric non-linearity. This latter is entirely taken into
account with an additional matrix AS™. The material non-linearity affects only the
three-by-three matrix Sy which is valid also in the linear theory.

18



On now proceeding to consider cracking and plastification, i.e., the cases where
». #0, we need only investigate how S? is altered. As the strains are the derivatives
of the displacements, we shall first take a closer look at these. The choice of (15)
means that for the displacement u(x, y) at a distance y from the centroidal axis the
following expression holds:

ux,3) =) —-7 5 (24)

For a line extending parallel to the centroidal axis at some distance therefrom ¥ is
constant, so that there a quadratic course for u(x, ¥) is possible. We shall wish to
choose as our axis for the member such a line which does not coincide with the
centroidal axis, and we must therefore make an assumption as to the functional
behaviour of u(x) and v(x) in that line (Fig. 9b).

At a distance y from this axis of the member the horizontal displacement is:

u(x, ) = u(9)—y 3 (25)

At the actual axis of the member the distance y is zero, so that there u(x) must describe
the displacement alone. We have shown that the function for this will be at least
quadratic. We shall accordingly decide to choose a second-degree interpolation for
u(x) at the axis of the member. The three displacement parameters adopted for the
purpose are indicated in Fig. 10a. At the intermediate node the additional displace-
ment in relation to a linear function is treated as the unknown. As will appear in
due course, we thus obtain the best tie-up with the existing programs.

A u(x) quadratic interpolation
for u(x) at axis of member Q.

X g

N LK %

1
i IR
i X

cubic interpolation for .
v(x) perpendicular to Fig. 10.
axis of member b. Assumed displacement field.
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The third-degree interpolation for v(x) remains valid irrespective of the position
of the x-axis (Fig. 10b). Our displacement field is therefore determined by:

- 4x(1—x

u(x)=—l—xui+§uj+ (lz )uk (206)
x(1—x)* —x*(I—x

o(x) = (12)0i+ xl(z )oj

At the axis of the member we may again consider an average strain ¢, and the curvature
% (Fig. 9b). The relation with u(x) and v(x) follows directly from (26):

du Al 41—8x
89:—- = — 4+ ———2—
dx 1 l
d*v _4l—-6x

2]—6x
H = —‘—j—;z——- lz 0,"‘ l2 Gj (27)

Uy

The deformation part %(EAE§+EI%2) of the potential energy P as given by (17)
(still expressed in &, and %) is written as follows in matrix notation:

1[E, x] [EA O g,
0 EI %

With the relation readily deducible from Fig. 9
&, =¢&,ty,x

the deformation part (28) becomes:

%[sg%] [Dn D12} [Sg}
(29)
D,y D, X
where:
‘ D, =FEA
Dy =y.EA
Dy, =Dy,

D,, = EI+yEA

The equation (14) expressed the relation between the quantities &, », N and M as
defined at the centroidal axis. Thus the matrix D from (29) now expresses the relation
between &, x, N and M at the chosen axis of the member.

The procedure of minimalising P follows the same further pattern as before. We
now use (27) and (29), so that we obtain four equations comprising u,, Al, 0; and 0;.
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(30)
_Symmetric Sas 0
The terms S,,, of the matrix S are integrals which are simple to work out, as in (20a),

while the terms of the D matrix take the place of EA and EI. With Y = x/I the terms
are:

1
S11 = 7= 80Dy, dy

1 = 7] (=8P, y

Sis3 =%j(1;(4—81//)(4—61//)D12dn//

S1a =] (=80 G=60D,

S =%(})D11dw

Sas =%i(4-6¢)p12d¢ 1)
Sz4=%:f)(2—6lﬁ)D12dl,b

Sas = 11(})(4—6¢)2D22d¢

Si4 =llj:;(2—6l//)(4—6l/1)D22dlﬁ

Sus= 1] -6 Daadll

For (30) we can write the more compact expression:

Sllll SME u 0
= (32)
SE!I SSS v& kﬁ
Here the vector u is the parameter u,, and v, contains A/, 0; and 0;. There are actually

two equations stated in (32). From the first of these we can derive a relation between
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u and v,. We can then introduce this relation into the second equation, which thereby
becomes:

[See-_ssusu_ulsus] v, = ka (33)

The matrix between square brackets is the required three-by-three stiffness matrix Sy
for an arbitrary distribution of the stiffness E.

The displacement u, can be calculated from v, according to the first equation of
(30):

EAF—&

U= —
Sll Sll

0, — g_fef (34)

Finite difference technique

In the approach based on the finite difference method a series of equidistant points
along the member is considered. There are m such points between the ends 7 and j.
At all the points we know EA, EI and the distance y, from the centroid to the chosen
axis of the member. The matrix F of influence coefficients can be determined by a
simple procedure. From this we obtain the matrix S, by inversion. The calculation
of the three-by-three matrix F is performed as follows. First, we apply at the axis of
the member a normal force of unit magnitude. We calculate how much the distance
between point i and point j is increased (F;;) and how much node i and node j
rotate (F;, and F,;). Next, we consider the case where a unit moment acts at node i,
again we calculate the corresponding three deformations: F,q, F,, and F,;. Finally,
we perform a similar calculation for a unit moment acting at node j, so that we obtain
F;,, F5, and Fj;.

In each of these three loading cases we first calculate the extension of the actual
centroidal axis and the rotations at the ends thereof. The extension of the axis of the
member then follows directly from this by means of a simple transformation. The
rotations at the nodes i and j are equal to those which occur at the ends of the cen-
troidal axis.

The change in length of the centroidal axis occurs only in the case where the normal
force of unit magnitude is acting. This change in length is then:

! 1

—d 35
JEa (35)
The integration is performed numerically. In general, the rotations of the ends of the
centroidal axis occur in all the three above-mentioned unit cases. In the first case
the external moment M, is equal to the product of the eccentricity y, and the normal
force of unit magnitude. In the second and the third case the external moment M,
varies linearly from unity to zero. The differential equation for the deflection v of the
centroidal axis is as follows (I is positive if it is a tensile force):
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2
—Elg;g +No= M, (36)

At the m difference points we shall consider the discrete values of v as unknowns.
At each point p there is a known value EI, and a known value M,,; let & denote the
spacing of the points. At such a point we can now write for (36):

Nh? h?
_Up..1+[2+E—Ip:]Dp—Up+I =E—1—;Mﬂp (37)

For N we substitute the value that we expect to obtain as the result. In an iteration
process each successive stage is performed with the result yielded by the preceding
calculation. Equation (37) is established for all m difference points. For v at node i
and node j a zero value is introduced. We obtain a set of equations comprising m
unknowns v; the matrix of the coefficients is symmetric and has a pronounced banded
structure. The rotations follow from the solution of the set of equations:

vy h
Or =3 +3g, M
(38)
= —my N

I h  2EI; M;

In this way a completely symmetric matrix F is established, so that S, will also display
pure symmetry. There is a significant difference in relation to the method based on an
assumed displacement field. With the finite difference technique it is not possible to
uncouple the material and the geometric non-linearity. We obtain the matrix S,
““at one go”. The separation into S_ and S” can now not be done.

The six-by-six matrix S¢ therefore follows directly from (compare with 23):

§¢=C'S,C+AS"

In Section 6 we shall confine ourselves to the “assumed deflected shape” method.
The reader can verify for himself how, on similar lines, the problem can alternatively
be dealt with by the finite difference technique.

6 How the program works

General

In principle, a non-linear analysis proceeds as indicated in Fig. 11. We choose an
initial estimated value for the normal forces N and the magnitude of the modulus of
elasticity E. For N this value is zero, and for E we adopt the value at the origin of the
stress-strain diagram.
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choose a value for the
normal forces Nand a
distribution of the
stiffnesses E

determine S$€ from E
and ASNN from N

B
14

calculate S€ in accordance
with s€=c7s2c+ asNN

for all members

e
X $-=Xs

-

solve v from

Sv=Kk
E -
= from v€ follows
55 M,D and N
£
correct the .
distribution ; desired accuracy
of E attained ?
yes

calculate support reactions

Fig. 11.
Approximate flowchart for a non-linear
end analysis of framed structures.

For each member of the structure we choose an axis (the axis of that member),
after which S? can be calculated in accordance with (33) and S$™ can be calculated
with (22). The total matrix S° is then obtained from (23). The further procedure is
the same as that for a program based on the linear theory. When finally v* and N
for all the members are known, the calculation can be repeated with a better estimated
value for S°.

With v° the values of u;, u;, u,, 0; and 0; respectively are definitely established, and
therefore with (27) the average strain &, and the curvature » at each section of the
member is likewise established. The total strain across the depth of each section is
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then known (see Fig. 9b). The apparent E associated with this strain can then be
red from the o—¢ diagram of the material. This operation of seeking the value of E
corresponding to a particular strain ¢ will always have to be performed, whatever
the shape and constitution of the section, and is the only stage in the analysis procedure
at which the chosen o-¢-diagram comes into it. As stated earlier on, this part is
accommodated in a separate subroutine (EMOD). The input parameter is the strain
and the output parameter is the required E.

From the new distribution for E the two-by-two matrix D can be calculated with
(13) and (29). This matrix D is typically determined by the shape and constitution of
the cross-section of the member and is accordingly produced in a subroutine (DRSN)
already referred to. For each cross-sectional shape an individual DRSN subroutine
will have to be established. The input parameters are ¢, and x; the output parameters
are the terms Dy, D, and D,,. In the DRSN subroutine a call is made upon the
EMOD subroutine for determining the apparent moduli of elasticity E. The integra-
tions in (31) are performed numerically with the aid of the trapezoidal rule.

The final step consists in calculating the matrix S for the member from (30), (32)
and (33). The calculated matrices D are used for the purpose. Now an integration
over the length of the member has to be performed. Simpson’s rule is applied here,
as greater accuracy is desirable. For an elastic prismatic member the exact stiffness
matrix will then in any case be obtained. Determining the stiffness terms of S? is
performed in a subroutine (STYTER). In principle, this subroutine need be pro-
grammed only once and is at the disposal of all users. It will have to be altered only
if it is felt nessecary in future to assume another displacement field.

STANIL program

On the basis of the “‘philosophy” outlined above, the Data Processing Division
(Dienst Informatieverwerking) of the Rijkswaterstaat has prepared a program design-
ated as STANIL, which is made available also to other users. For this purpose a
program for the analysis of plane framed structures which was already at the disposal
of that Division has been modified somewhat. As already stated, this involves mainly
the writing of the three subroutines EMOD, DRSN and STYTER. The FORTRAN
lists of these routines are appended to this paper. Any one who has a normal program
at his disposal can apply the modifications quite simply. The STYTER subroutine
will, in principle, always remain valid; EMOD will have to be changed only if the
C.E.B. (European Committee for Concrete) sees fit to revise the recommended
stress-strain diagrams, and DRSN will have to be individually established for each
cross-sectional shape (and is independent of the material properties). The program
obtained really is very general. Merely by altering EMOD it can be used also for
other materials, such as aluminium, wood, etc.

Example and indication of cost

For eccentrically loaded individual reinforced concrete columns De Groot has in-
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w=0.3%

. IS
M
1,16 | 16 ]
/I
N =240 kN
ep=6.6cm
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Aali?-jk 1. only second-
order effect
2. second-order and

material behaviour
(cracked and yielded )

a. b.

Fig. 12. State of failure of a reinforced concrete column.

vestigated a number of cases with the aid of the finite difference technique. One such
instance is represented in Fig. 12a. The STANIL program gives practically the same
result. For equal eccentricity e, the failure load differs by less than % per cent from
the result obtained by means of the finite difference technique which here is considered
to be the exact one. In this comparison the column comprises one element. In Fig.
12b it is shown how the displacement increases in consequence of cracking in the
concrete. Because of this the largest moment increases by about 50%, in relation to
the uncracked state. In actual calculations for the analysis of frameworks similar
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results may be obtained. No examples of such cases will be given here, but we shall,
in conclusion, give some idea of the cost of performing such calculations. A framed
system comprising 183 joints (nodes) and 240 members of seven different types,
largest node number difference of 10, attains equilibrium after four iterations, for a
given loading. The cost of performing the analysis on the CDC6600 computer is
approximately Fl. 85.— ($ 25.—).

7 Concluding remarks

It is possible to fulfil in a simple manner the desired features listed in Section 2 of
this paper. Interchangeability of a quite unexpected simplicity has been achieved.
The most important task to be performed consists in writing the DRSN subroutine
for the cross-sectional shapes currently used in structural engineering practice. The
DRSN for rectangular sections is given in an appendix to this paper.

The present author hopes that others will write and publish DRSN subroutines
for T-beams, round columns, square box-shaped members (e.g., as embodied in the
structural cores of tall buildings), etc. It should thus be possible to avoid unnescessary
duplication of work by engineers all individually producing their own programs.

It is alternatively possible to apply the finite difference technique. For this the
STYTER subroutine will have to be somewhat modified, but otherwise the scheme
presented here remains applicable.

Finally, it should be noted that the method can also be so formulated that the
analysis can be performed with increments of the loading. In that case it is not
necessary to use an apparent modulus of elasticity; the tangent modulus can be
introduced instead. This may be advantageous if it is desired to investigate accurately
the formation of concentrated ideally plastic hinges.

Translator’s note:

The acronyms used to denote the subroutines and programs are based on Dutch words:
DRSN is derived from “doorsnede” = “section” (of a structural member)

EMOD is derived from “elasticiteitsmodulus” = “modulus of elasticity”’

STYTER is derived from “styftheidstermen’ = “stiffness terms”’

STANIL is derived from “staafconstructies niet-lineair’” = “non-linear framed structures”.
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SURROUTINE STYTER(S11+5124513,522.52345334C14C2,4C3)

THE SUBROUTINE DETERMINES THE THRFE-BY-THREE STIFFNESS MATRIX
OF A MEMBER BY MEANS OF NUMERICAL INTEGRATION. THE THREE-
BY-THREE STIFFNESS MATRIX RELATES TO THE THREE DEFORMATIONS
DELTALs TFT1 AND TET2. THF ROUTINF STARTS FROM A MEMBER
WHICH IS NIVIDED INTO A NUMBER (NMOT) OF SEGMENTS. PER
SEGMENT THE CROSS-SECTIONAL SHAPE MAY BE DIFFERENT.

THIS PROVTISION HAS BEFN MADE BECAUSFs INTER ALTAs THE
REINFORCEMENT MAY VARY WITHIN ONE AND THE SAME MEMBER.

THE LENGTHS OF THE SEGMENTS ARE GTVEN IN AN ARRAY ALMOT.

PER SEGMENT AN EQUIDISTANT DIVISION INTO STEPS IS MADE.

THE NUMBER OF STEPS PFR SFGMENT IS FVENs SO AS TO ENABLE
INTEGRATION TO BE PERFORMFD PER SFGMENT WITH STMPSON#S RULE.
THE NUMBER OF STEPS FOR THE VARIOUS SEGMENTS OF A MEMBER IS
PASSED IN AN ARRAY NSTMOT FROM THF MATIN PROGRAM TO THIS
SURROUTINF. HOW THIS NUMBFR IS ESTARLISHED IN MAIN IS NOT

OF IMPORTANCE HERE. IT MAY DIFFER FROM ONE PROGRAM TO
ANOTHER «

PER SEGMENT THE NUMBER OF SECTIONS CONSIDERED 7S ONE MORE
THAN THE NUMBER OF STFPS. THE STIFFNESS NUMBERS D11s D21 AND
D22 OF ALL THE SECTIONS OF ALL THE SEGMENTS OF THE MEMBER ARE
ARRANGED IN SEQUENCE TN THE THREE ARRAYS DD11ls DD21 AND DD22.
THF SIX TERMS OF THE UPPER TRIANGLE OF THE STIFFNESS MATRIX
ARE S1le S12s S13e S27s S?3 AND S33.

THE THREE COEFFICIENTS Cls C2 AND C3 CAN BE USFD FOR
CALCULATING THE HORIZONTAL DISPLACEMENT UK HALFWAY ALONG THE
MEMBER FROM DELTALs TFT1 AND TET2. THE RELATION IS:

UK= C1#DELTAL + C2#TETL + C3*TET2

IN THE CHOICE OF THE ARRAY DIMENSTONS IT IS ASSUMED THAT
THERE ARF UP TO S SEGMENTS PER MEMBER AND AN AVERAGE OF S
SECTIONS PER SEGMENT (MAXTMUM 25 SECTIONS). THE ARRAYS

S50, Y AND S ARE AUXILTRARY ARRAYS. THE ARRAY vyL IN COMMON
RELATES TO DATA WHICH ARE NOT USED TN STYTER.

DIMENSION SO(10)sY(1025)+S(10)
COMMON VUL (16) +DD11(25) 3DN21(25) 3DD22(25) sNMOT,ALMOT (5) sNSTMOT (5)
x1=0

NN=0

00 10 J=1410

S(J)=0.

CONTINUE

AL=0.

DO 20 L=1.NMOT

AL=AL+ALMOT (L)

CONTINUE

DO 290 L=1+NMOT

AL1=ALMOT (L)

N=NSTMOT (L)

AL3=AL1/ (3#N#*AL#AL)

FN=N

X=AL1/(FN#AL)

X1=X1=X

N1=N+1 N

DO 100 I=1,.N1

73=DD22 (NN)

Al=6%X1

A2=24%X1

A3=36%X1

Bl=X1#X1

B2=36481

R3=4881

Y(1,1)=71

V(29 T)=(=A1+4)#22
Y(3s1)=(=A1+2) 522
Y(4,1)=(R2-24A2+16) %23
Y(S41)=(B2-A3+8)#73
Y(6eT)=(BR-A2+4)#Z3
h4#BL-645X1+16) #Z1
Y(RaT)=(4=REX1)#Z1
Y(941)=(B3-564X1+16)#72
Y(10e1)=(R3=402X14+8) #72
CONT INUE

DO 101 J=1,10

S0 (J)=0

DO 250 J=1,10

D0 200 I=25Ny2 )
0P=Y (Js T=1) +4¥Y (I 1) +Y (S5 T+1)
S0(J)=S0(J) +OP*AL3

CONT INUE

D0 260 J=1110
S(J)=5(J) +S0 (J)

CONT INUE

CONT INUE

S7=5(7)

10y

S11=S(1)=-SR*SR/ST
S512=S(2)-SR*S9/S7
$13=S(3)=S8#S0/S57
se (4)=S9%59/57
$23=5(5)=59%S0/S7

RETURN
END
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SUBROUTINF  DRSN(EGsSKAP,D11,D21+D22)

THE CROSS-SECTION IS RECTANGULAR WITH

TOP AND BOTTOM REINFORCEMENT. THE

AVERAGE STRAIN EG AND THE CURVATURE SKAP
ENTER INTH THE SUBROUTINE. THE OUTPUT
CONSISTS OF THE THREE STIFFNESS NUMBERS
D11s D21 AND D22. THE DEPTH OF THFE
SECTION IS DIVIDED INTO N INTEGRATINN
STEPS. THF CONCRETE STRAIN IS

DETERMINEN AT NB=N+1 POINTS AND THE STEEL
STRAIN AT NS=2 POINTS.

THE STRAINS OCCUR IN THIS SEQUENCFE TN THE
ARRAY EPS, THE CORRESPONDING MODULTI OF
ELASTICITY E ARE DETERMINED IN THE FMOD
SUBROUTINE, THESE FORM THE BASIS FOR THE
CALCULATION OF D11s D21 AND D22.

IN THE COMMON AREA ARF:

VUL (6) = DATA WHICH ARE NOT USED IN
DRSN (SEE EMOD)

IFOUTS = COUNTER FOR SIGNALLING (SEE
EMOD)

IFOUTH = DITTO

H1 = DISTANCE FROM BOTTOM CONCRETE
FIBRE TO AXIS OF MEMBER

H2 = DITTO FROM TOP CONCRETE FIBRE
(GIVE AS NEGATIVE)

El = DISTANCE FROM BOTTOM
REINFORCEMENT TO AXIS OF MEMBER

E?2 = DITTO FROM TOP REINFORCFMENT
(GIVE AS NEGATIVE)

W1 = BOTTOM RETNFORCEMENT
PERCENTAGE (POSITIVE)

w2 = TOP REINFORCEMENT PERCENTAGE
(POSITIVE)

BR = WIDTH OF SECTION

N = NUMBER OF STEPS FOR THE

TRAPEZOIDAL RULE
THE ARRAY SIG IS AN AUXILLIARY ARRAY.

COMMON VUL (6) » IFOUTS s TFOUTBsH1 s H24ET19E29 W10
DIMENSTON EPS(15)+ELA(15)+SIG(15)
TOTH=H1-H?

AFST=TOTH/N

HAF=AFST/?

NS=2

NB=N+1

NK=NB

HW1=W1#TOTH/100.

HW2=W2#TOTH/100.

CALCULATION OF TOTAL STRAIN DISTRIBUTION
DO 1 T=1sNK

EPS (1) =EG+SKAP# (H2+ (I-1)*AFST)
EPS(NK+1) =FG+SKAP#E]

EPS(NK+2) =EG+SKAP#E?

CALL EMOD (EPS,ELA,NB4NS)
ELS1=ELA(NK+1)
FLS2=FLA (NK+2)
CALCULATION OF D11,
D11=0

021=0

p22=0

DO 2 I=laNK
SIG(I)=ELA (L) # (H2+ (I=1)*AFST)
DO 5 T=1sN

X1=ELA (D)

LACT+))

16(1)

X4=SIG(1+1)

A=HAF# (X1+X2)
XH=H2+AFST#1
XG=XH=24/3#AFST
B=HAF#X 1 #XG

C=HAF#X3%XG
XG=XH=14/3#AFST
+HAF#XP#XG
C=C+HAF#X4#XG

011=D11+A

D21=D21+R

D22=N??7+C

CONTINUE

AST2=HW2#F|_S?
AST1=HW1#FLS1

D11=D11 +AST2+AST1
D21=0D21 +E24AST2+E1#AST1
EPPP=FR#ER#AST?
E223=F1#E1#AST1
D22=D22+EP22+E223
D11=D11%RR

DP1=D21#R%

D?2=DP2#RR

RETURN

END

D?1 AND D22
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SUBROUTINE EMOD (EPSsFLAsNBsNS)

NB + NS STRAINS ENTER INTO THE ARRAY

EPS. THE MODULUS OF ELASTICITY

SELECTED AS CORRESPONDING TO THESE
IS IN TURN GIVEN OUT TN THE ARRAY
ELA. THE FIRST NB POSTTIONS RELATF
TO CONCRETE AND THE FOLLOWING NS
RELATE TO STEEL. THE SIGMA-EPSILON
DIAGRAM OF BOTH THE CONCRETE AND
THE STEEL IS BILINEAR. THE CONCRETE

CANNOT RESIST TENSION
IN THE COMMON AREA ARE:

SVLS = YIELD STRESS OF STEEL

SvLB = YIELD STRESS OF CONCRETE

ES1 = STEEL STRAIN AT START OF
YIELDING

Es2 = FATLURE STRATN OF STEEL

EB1 = CONCRETE STRAIN AT START
OF YIELDING

EB2 = FAILURE STRATIN OF CONCRETE

IFOUTS = COUNTER; THIS IS INCREASFD

RY ONE UNIT IF ERS2 IS
ANYWHERE EXCEEDED

IFOUTR = DITTO FOR EB?

THESE COUNTERS ARE USED FOR

SIGNALLING (FLAGS) «

COMMON SVLSsSVLBsES1sFS2+FB1HEB2y

#IFOUTS s IFOUTB
DIMENSION ELA(15)5EPS(15)
NK2=NB+NS
DO 1 I=1sNK2
IF (EPS(I)) 2523
ELACT) =0
G0 TO 1
EPS(1)=ABS(EPS(I))

IF (EPS(I)-EB1) Se5s4
ELA(I)=SVLB/ERL

G0 TO 1

IF (EPS(I)-EB2) T+7+6
ELA(I)=SVLR/EPS(I)

G0 TO 1

CONTINUE
IFOUTB=IFOUTBR+1
CONTINUE

NK1=NB+1

DO 20 I=NKls NK2
E1=ABS (EPS (1))
IF(E1-ES1) 11911912
ELA(I)=SVLS/ES1-ELA(T)
GO TO 20

IF (E1-ES2) 13,13,14
ELA(T)=SVLS/E1=-ELA(I)
GO TO 20
IFOUTS=IFOUTS+1

CONT INUE

RETURN

END

J I

1

ALM BT(1) ALMPT[2) ALMET(3) ALMET(4)
A ’ 77

HMPT:é

TET 1

TET @

section a-a

Fig. 13.

Explanation relating to
DRSN and STYTER
subroutines.
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