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The ultimate load P, of a structure is usually calculated with the aid of the
elementary plastic analysis. Numerous experiments have shown that this
method of analysis generally yields reliable results. In the case of very slender
structures, however, the stability may adversely affect the ultimate load.

In order to estimate this effect, an eccentrically loaded member is considered
in the present paper. It appears that the actual collapse load P, can be
Sound with the aid of a simple formula in which the ultimate load P,
calculated according to the elementary plastic analysis, and the Euler
buckling load Pg play a part.

A corresponding formula is found for the calculation of the actual collapse
load of any particular portal frame whose displacements are confined to its
own plane. In order to determine for such a portal frame the load correspond-
ing to Pg, a caricature model of the structure is used which is much more
slender than the latter and which can be constructed in a very simple manner
from small strips of mild steel.

The method presented may be of importance, not only for arriving at more
exact design rules for normal structures, but also for collapse analysis for
cases such as fire or war damage, under which conditions the loading may
approach the collapse load very closely.

0 Introduction

The object of plastic design, or collapse analysis, is to design a structure for
ultimate strength, i.e., it is endeavoured to determine the load at which the
structure actually collapses. In general, and more particularly with regard to
steel structures, this leads to a simple design method, as it can be assumed that
a section, on reaching a certain bending moment A, will develop a “plastic
hinge” which always transmits the same moment, whatever the magnitude
of the angular rotation. With increasing load the structure will collapse when
so many plastic hinges have developed that it becomes a “mechanism”, i.e.,
becomes unstable. No further increase of the load is possible.

By means of plastic design it is possible to obtain a good idea of the reserve
strength (load capacity) that the structure still has available when the per-
missible load according to the elastic methods of analysis has been reached.
An obvious conclusion is that substantial savings in materials can be effected
in certain cases. For this reason many of the structures hitherto erected, de-
signed in accordance with the plastic theory, convey an impression of slender-

1



ness. A number of examples of such structures are to be found, inter alia, in
“The Steel Skeleton”, Vol. IT, by Baker, HEyman and HornE. The question
that may be asked is whether one can perhaps go too far in this direction, so
that, for example, there arises a risk that a structure becomes so slender as to
endanger its stability. Can a reliable criterion for this be established?

The “exact” theory of buckling in the elasto-plastic range is particularly
complex. To find a method whereby the stability can be judged and which
ties up tolerably well with the elementary methods of plastic design, it will be
necessary to introduce major simplifications in order to obtain a sufficiently
convenient and manageable result.

1 Eccentrically loaded compression member

In order to gain some insight into the problem, the simple case of a straight
eccentrically loaded compression member — a prismatic bar — will be consid-
ered (see Fig. 1). This member has a length /, a stiffness EI and a plastic
moment Mp. All its deformations are assumed to be confined to the plane of
drawing. On applying the elementary plastic analysis to this member, we
should find:

My—=Ppe. . o v oot ()

which means that the member behaves elastically up to the load P, = Mple.

When the load P, is reached, a plastic hinge develops over the entire length
of the member, and the ultimate load capacity is attained. If the member has
a finite stiffness EI, however, deflections occur in consequence of the bending
moment. The bending moment that actually occurs in the middle of the
member increases, namely, M = Py (see Fig. 1). If the deflection » were caused
by the moment M = Pe, we should find:
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In reality, however, the moment is not equal to Pe, but to Py, so that the
deflections become larger.
It is known that the following approximation is reasonably accurate:

n

y = O G X))

n—1
where 7 denotes the ratio between the buckling load Pg according to EULER
and the load P, actually applied:

PE ﬂzEl

n:7 and Pr = .

/2
Hence we can write:
¢
y = P(3b)
j—
Pg
The member will collapse when P = Py, so that Py, » = Mp. Therefore:
P]cre
My = Ppe— (4a)
| Pw
Pg
and hence:
Pr Py
Py = . 4b
o Pg+Pp (4b)
or:
SR B (4e)
Py P Py

This simple formula is found to provide a very good means of predicting the
collapse load of an eccentrically loaded member. For members with not too
short and stout dimensions the effect of the axial thrust upon the plastic
moment is not great and can therefore usually be neglected.

2 Framework of members

On passing from this simple member to a more complex system of members
— e.g., a portal frame — it is obvious to suppose that the elastic stability and the
ultimate load according to the elementary plastic analysis will play a part
with regard to the strength of such a structure as well.

Under a load of small magnitude this system will display an entirely elastic
behaviour. The deflections z¢ can be deduced from the distribution of forces as
determined for the undeformed system (the ordinary elastic analysis). It will
be assumed that no displacements other than in the plane of drawing can
occur. As the deformations will also have some influence upon the distribution
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Fig. 3. Relation between the displacement y of an arbitrary point of a structure (e.g., the
horizontal displacement of the horizontal member of the system indicated) and the load. The
following quantities are involved:
the elastic buckling load P,: before any plastic hinges have developed

P,: for the structure with a hinge at 4

P,: for the structure with hinges at 4 and B
According to an ordinary elastic analysis — i.e., neglecting the effect of deformations — a
plastic hinge at 4 would be formed at a load P = Py4. Actually, this occurs at a somewhat
lower load P, because the displacements y, also have some effect on the distribution of forces
in the structure. After the plastic hinge at 4 has developed, the structure is more flexible, so
that displacements y; occur. For P = P, the next hinge is formed, at B, so that the system
becomes even more flexible and displacements y, occur, etc.

of forces, they will be multiplied by a small magnification factor , where

no—
no = P[Py and Py is the elastic buckling load of the portal frame conceived
as entirely elastic. The actual deformations are then (see Fig. 3):

o

Jo = Zo(5)

no—l

When P has attained the value P,, then the moment at point A has become
equal to M, so that a plastic hinge develops there. Even now the portal frame
still behaves elastically. Only at the plastic hinge is there a known ‘“‘external”
moment acting upon the structure, but otherwise the hinge behaves like an
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ordinary hinge. A fresh distribution of forces can now therefore be determined,

whence — in this case with a magnification factor

— the deflections y; can
ny—

be deduced. Here ny = P1/P and P; is the elastic buckling load of the portal
frame with a hinge at A. Naturally P; is smaller than P,. Continuing in this
way, for P = Pj another hinge is formed, this time at B (see Fig. 3). Let P
denote the elastic buckling load of the portal frame with two hinges, while
Py < Py < Po.

In this manner a number of hinges are formed until a system with » hinges
is obtained which has an elastic buckling load Py which is smaller than the
force P, at which the hinge n was formed. The most obvious case is the one
considered by the elementary plastic analysis, namely, where Py = 0, when
the structure with n plastic hinges has become a mechanism. However, in
slender structures the load capacity may in some cases decrease to such an
extent already with a smaller number of plastic hinges that collapse occurs.

Assuming that the place N where the nth and last plastic hinge will shortly
develop is known, it is clear that in the system with n—1 hinges the moment at
N is characterised by the force R,—1 which this section has to transmit and by
the eccentricity z,-1 of this force. If the force distribution is represented by a
line of thrust along which certain force components act, then this distribution can
be determined for the undeformed system with n—1 hinges. The force R,—1 is
then linearly dependent upon P, and the eccentricity z,-1 is known. Because of
the deformations, the eccentricity will approximately be multiplied by a factor

Np—1

, while the magnitude of R,_; will undergo relatively little change,

Np—1—
inasmuch as Ry-1 is obtained by resolution of the externally applied load
system.

The plastic hinge at N will therefore develop when:

Np—1

Rn—l

w1 =My, . . . . . . . .. ... .. ... (6
nn—l—ZI D ()

If a straight member (as discussed on page 3) is considered for comparison,
this member can be made as far as possible equivalent to the given structure.
This means that for this member, loaded by a force P with eccentricity e,-1,
the following is valid:

EurLer buckling load Pp = elastic buckling load P,-—1 of the portal frame
with n—1 hinges;

critical load Py = Py, of the portal frame;
ultimate load according to elementary analysis P, = P of the portal frame.

As R, is linearly dependent upon P, we can write:

Pen—]_ _— Rn-—-l Zn—l . . . . . . . . . . . . . . . . . . . (7a)
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At the instant when the nth and last hinge is formed, P becomes equal to
Py, so that:
P]cren_l“——Rn_lzn71..................(7b)
or, having regard to (6):
Prrews " —Ryqzaq " =M, .. ... ... (70
np—1—1 Np-1—1

From the elementary plastic analysis — i.e., neglecting the deformations — it is
known that:
Ppen i =M, . . . . . .. ... 0.0 (8

at any rate, if it is assumed that in both cases it is the same hinge that is the
last to develop. Hence it can be stated that:

Ny —
Ppena = Prrena nt . (98.)
nﬂ—141
or:
1—1 P, 1—P
Pop—="m " p, I T ... . (9b)
Np—1 Py
so that:
1 1 1
—_— = 9c
Plcr Pp Pn~1 ( )

It is therefore not unreasonable to assume that the actual collapse load Py,
of a portal frame structure, like that of an eccentrically loaded compression
member, can very simply be expressed in:

P, = the ultimate load of the structure according to the elementary plastic

analysis;
Py-1 = the elastic buckling load of the — in many cases statically determinate —
system in which all the hinges except the last have developed.

It is not, however, a simple matter to determine P,—1 by calculation because,
before the penultimate plastic hinge occurs, the stability may already have an
appreciable effect on the distribution of forces. For this reason the elementary
plastic analysis is not always able to predict with sufficient certainty where the
plastic hinges will occur and in what order they will develop.

3 Using a model as an aid

An obvious idea is to make use of a model for solving this problem. Of course
a model which is a “caricature” of the portal structure to be investigated, and
in which the effect of stability plays an exaggerated part, has many advantages
over an entirely realistic model. Because of the great slenderness of such a
“caricature” model, the collapse load can be expected to be considerably
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lower than that predicted by the elementary plastic analysis. For the actual
structure we can put: El/I2 = 4 and M/l = K. For the model these values
are 4; and K respectively.

The ultimate load according to the elementary plastic analysis is P, = pK
for the actual structure and P, = pK; for the model. Furthermore, if the
plastic hinges occur in the same sequence and in the same places both in the
model and in the actual structure, then the buckling load P’,,—; of the model
can be expressed in terms of the buckling load of the actual structure, as
follows:

P,n_]_ == Z Pn41 L T R T Y (10)

In reality, P’',—1 will usually be a little smaller, since the model dimensions
are so chosen that the deformations in the model have more effect upon the
formation of the plastic hinges than they have in the actual structure.

The collapse load of the model P’y can be expressed in P’p, and Py,
according to (9¢):

1 1 1

Y = , + Y 1 1a
P kr P » P n—1 ( )
whence it follows that:

1 1 1

P/n41:Pllcr_P,p
The buckling load of the actual structure can then, with the aid of (10), be
determined as follows:

I 4 _Al(l 1)
Po1i A Pua  A\Pr pKy

This provides a somewhat low estimate of Py-1, which is on the safe side. The
collapse load Py, of the actual structure can now be predicted by means of the
surprisingly simple formula obtained by substitution of (12) into (9c):

(12)

1 _A1(1 1)_|_1 (13)
Po — A\Pn k) Tk
In this formula 4 and K are quantities derived from the actual structure.
Ay and K; are determined by the dimensions of the model, while p is found with
the aid of the elementary plastic analysis. P, is the collapse load of the model.

The fact that only the collapse load has to be determined makes the model
technique particularly simple.

4 Model technique

A model can be constructed from strips of mild steel. The steel should have a
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definite yield point. M, and EI can be determined with the aid of a simply-
supported beam or a cantilever. The value of EI can, however, also be deter-
mined with sufficient accuracy by calculation. For all the members it is nec-
essary to assign a certain constant value both to the ratio 41/4 and to the ratio
K1/K. Of course, 41/4 will have to be considerably smaller than Ki/K because
a=A/K = %: ? is a measure of the effect of the stability upon the load
capacity. According as a is smaller, the structure will be more flexible, and the
model will have to be exaggeratedly flexible. Since M, = 1/sbh%c, and I =
= bh3/12, the ratio a = EI/M,l = Eh/30,l can be given any desired value by
suitably choosing 4, i.e., the thickness of the steel plate from which the strips
are cut. Also, the values of M, and EI can be chosen as desired, by suitably
selecting the width & for the strips.

The model can be assembled very simply with the aid of small clips or
Meccano components or even by welding. A great advantage is that, gen-
erally speaking, the lines of thrust of the forces are far away from the centre-
lines of the members. For this reason initial curvatures of the members, which
in more theoretical cases of buckling always present numerous experimental
difficulties, are of no consequence in the models considered here. Nor has the

precise shape of the moment-curvature di-

’ l agram much effect on the results. So long as
- - M, does not change, the strength of the
My model remains practically unchanged, so that

in many cases it is possible to straighten out
the model after it has collapsed and to re-use
o el it, for example, for the investigation of a
M *|  different loading condition.

By way of illustration, an example of a
portal frame constructed of DIN 10 rolled
steel sections (as represented in Fig. 4) will

400 cm

e == be considered. It is assumed that the struc-
- 40 cm ture is entirely restrained against lateral
Fig. 4. displacement out of its own plane. If we adopt

for the value of a in the model one-tenth of
the corresponding value for the actual structure, then the slenderness of the
model will be considerably exaggerated.
The following values relate to the structure:

EI M,

A:—lz—-—-6450kg and K:T—655kg
so that:
A 6450
= —= — = 9_
S G i



Photographs 1, 2 and 3

Various stages of deformation of a model of
a portal frame under increasing load. The
displacements occurred in the plane of the
structure only.

The model was constructed from mild steel strips with cross-sectional
dimensions of 1.5 mm X 10 mm. Hence it follows that £/ = 605 kgcm? and
M, = 13 kgcm, determined with the aid of a three-point bending test. There-
fore we have for the model:

EI
a = = 0.1 x9.82 = 0.982
pl
so that:
605
= =474
L= Gosaxig A em
The values for 4; and K; could now be calculated. These were:
EI M
Ar=" =027kg and Ki= T” = 0.275 kg

According to the elementary plastic analysis the ultimate load is P, = 8 M/l
(see photographs 1, 2 and 3). However, the model collapsed at P’y = 1.8 kg
= 6.55M)p/l.

The collapse load of the actual structure could now be determined from (13):

1097 ( 1 1 ) 1
R — 195 %106 kg 1
Po 645018 80275 T 8x655 % g



whence follows:
Py = 5130 kg

According to the elementary analysis the ultimate load would be:
M,
Py = 87 = 8 X655 = 5240 kg

In this case the actual collapse load was therefore 2.39, smaller than the value
predicted by the elementary plastic analysis.

It was subsequently found that a calculation for this case can also yield
fairly good results. To this end, a few plausible assumptions must be made with
regard to the nature of the deformations that occur. A calculation of this kind,
however, will always be very laborious, as it is also necessary to make assump-
tions as to the location of the last hinge and as to the number of hinges at
which collapse will occur.

5 Three-dimensional case

So far, we have proceeded on the assumption that the structure can undergo
displacements only in its own plane. The more general case, where a section
will not necessarily remain within the plane of
— —— the structure (see Fig. 5), is of course much

N more complex.

Three kinds of displacements are possible,
namely x, y and ¢, each of which is suggestive
of certain cases of buckling. With y is evidently
~ / associated the occurrence of buckling within the

Y plane of the system, and with ¥ and ¢ is asso-
S~ ciated the occurrence of buckling in a direction
Fig. 5. perpendicular to this plane, e.g., lateral buckling

and lateral-torsional buckling. There are indica-
tions that, also for the three-dimensional case, it is possible to investigate the
effect of stability upon the load capacity with just as simple means as those which
have been described for the two-dimensional case. Thisis important because most
structures which are loaded approximately up to collapse do indeed function
as three-dimensional structures — at any rate, if all the component parts have
been designed for approximately the same loads. To investigate a case of this
kind, three different ‘“caricature” models would be needed. What curious
collapse shapes may develop are shown by photographs 4 and 5. The models
illustrated are made from curtain-rail sections.

I —
N
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/
/
/
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6 Conclusion

In normal cases the collapse load can be predicted with reasonable accuracy
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Photographs 4 and 5

Collapse shapes of some models of frame-
works in which the displacements were not
confined to the plane of the structure.

with the aid of the elementary plastic analysis. It is of course advisable to en-
sure the stability of the structure as far as possible. In the well known book
entitled “The Steel Skeleton”, Vol. II, by Baker, HevMan and HORNE,
detailed consideration is therefore given to the method of so choosing min-
imum dimensions of columns and beams that the calculated load capacity will
not be adversely affected by phenomena of buckling and lateral-torsional
buckling. )

In certain circumstances, however, it may be of importance to determlpe
the collapse load of a very slender structure. For example, this case may arise
if it is felt to be desirable to establish design rules of greater accuracy than those
at present employed by BAKER and his associates. Furthermore, it may occur
that the purpose for which an existing structure is used 1s changed, so 'tha"c an
analysis based on the collapse load becomes necessary. Important applications
are conceivable in the case of structures which play a vital role in times of
war, such as factories and air-raid shelters, for which the actual collapse load,
even when columns have been destroyed by bomb explosions, may be of
importance. This also applies to outbreaks of fire in which the rise in tempera-
ture causes a lowering of the yield point and the modulus of elasticity of steefl.
In addition, the increase of creep will make the deformations increase m
magnitude. Damage and the danger to human life will be very much less if
the structure nevertheless does not collapse.

In such cases the method discussed here — which can probably also be
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extended to three-dimensional structures — provides a simple means of esti-
mating whether the actual collapse load is perhaps lower than is predicted
by the elementary plastic analysis. The requisite model, which constitutes an
exaggeratedly slender representation of the structure, is very simple to con-
struct and to test.
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